COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	Advanced numerical methods. Finite E	lement Method.	
Department	Physics			
Domain	Physics	Course category (FC/SC/CC ¹): SC	Term (1-4): 4	
Level	Postgraduate (MA)	Course type (Co/El/F ²): Co		

I. Course structure

			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
				semester	activity	$(C/Ex/CE^3)$		
Course	Seminar	Lab.	Project	6	56	124	Ex	English
2	-	2	-					

II. Instructors

	Academic	Scientific	Name and surname	Faculty position (tenure/
	degree ⁴	degree		associate - organization)
Course	assistant professor	PhD	Dorin Cimpoesu	tenure
Seminar				
Laboratory	assistant professor	PhD	Dorin Cimpoesu	tenure
III D				

III. Prerequisites

Modeling and simulation.

IV. Course objectives

To introduce the theory and applications of the finite element method as a general and powerful tool to solve the variety of problems of engineering and physics. To learn and apply finite element solutions to problems in physics.

V Course content

vi course cor	
Course	Interpolation by algebraic polynomials. Spline functions. Spline functions of several variables and finite element method. Finite element method for solution of boundary problems for elliptic partial differential equations. The weak form of a boundary problem. Applications of finite element method (mechanics, electromagnetism, micromagnetism)
Seminar	-
Laboratory	Students applies the programs and methods presented during courses. One third of the lab time is dedicated to individual project time.

VI. Minimal required references

[1] Dan Gârbea, "Analiză cu elemente finite", Editura Tehnică, București, 1990. [2] C.Ilioi, G. Ţârdea, "Splines and finite elements", Editura Universității "Al. I. Cuza" Iași, 1998. [3] J.L. Volakis, A. Chatterjee, L.C. Kempel "Finite element method for electromagnetics", IEEE/Oxford University Press, 1998.

VII. Didactic methods

Course: exposition, exemplification, discussions Laboratory: learning through applications, homework, projects

VIII. Assessment

¹ FC – fundamental course, SC – specialty course, CC – complementary course ² Co – compulsory, El – elective, F – facultative ³ C – colloquium, Ex – exam, CE – colloquium AND exam

⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

Pre-conditions	attendance to laboratory, obtaining the minimal grade 5 for each ongoing			
	assessment			
Exam dates	1 st Assessment	April		
	2 nd Assessment	June		

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	written and oral	50%
Seminar		
Laboratory	numerical implementations of models	50%