APPLIED GEOSTATISTICS FOR GEOCHEMICAL MODELING

CODE: GC 5203

LEVEL (UG-undergraduate/M-master) AND YEAR OF STUDY (1,2,3,4)				M2	SEM	ESTER		STATUS (CO-COMPULSORY/OP-OPTION	NAL)	CO	
NUMBER OF HOURS/ WEEK SEMESTER			Totai Hours Individu Work	TOTAL HOURS OF INDIVIDUAL WORK		S	EVALUATION TYPE (D-DURING THE SEMESTER, C-COLLOQUIUM, E-EXAM, M- MIXT)	LANGU	JAGE		
L	S	Р	Pr.								
2		2		48	192		8		М	Engl	ish

	POSITION, NAME AND SURNAME	DEPARTMENT
LECTURER	PhD Reader Laviniu Apostoae	Geology

h	
PREREQUISITES	Geostatistics; Soil Geochemistry and Pollution; Weathering of Rocks; Lithogeochemical Survey

OBJECTIVES	The course will introduce a number of geostatistical methods for the spatial analysis of geochemical data. Students will be able to apply geostatistics for the description of spatial patterns and identification of scales of variability, spatial interpolation and stochastic modeling of environmental attributes, creation of risk maps and their use in decision-making.
COURSE CONTENTS	Introduction. Exploratory spatial data analysis. Description of spatial patterns. Modeling spatial variability. Spatial prediction. Accounting for secondary information in kriging. Risk mapping and incorporation in decision-making. Stochastic simulation.
PRACTICAL	 On the basis of geochemical data (heavy metals in the soils of the municipality of lasi and surroundings areas) the students will be able to: import, visualize and analyze the data in a space-time information system; conduct a complete geostatistical analysis using the software; detect spatial outliers in the data; analyze and model the spatial variability of the data; map sparsely sampled environmental attributes and characterizes the reliability of those maps; choose the interpolation technique that makes best use of the information available; create risk maps, and use them in decision-making; gain a basic understanding of state-of-the-art geostatistical methods for stochastic simulation and space-time interpolation; explore and visualize local relationships between environmental variables.
TEACHING METHODS	Lecture; discussion

RECOMMENDED READING	Chauvet, P. (2008). Aide-Mémoire de Géostatistique Linéaire. Presses de l'Ecole des Mines. Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation.Oxford University Press. Webster, R., Olivier, M. (2007). Geostatistics for Environmental Scientists. 2 nd Edition.Wiley.
------------------------	--

	Conditions	Fulfilment of laboratory tasks
	Criteria	Correctness of results in taking over and interpreting field data
ASSESSMENT	Way of evaluation	The evaluation of students' knowledge is done both during the semester
METHODS		(continuous evaluation) and at the end of the module (written examination)
	Formula of the final mark	0,30 laboratory activity + 0,35 continuous evaluation + 0,35 examination
		evaluation