COURSE TITLE

ATMOSPHERE GEOCHEMISTRY AND POLLUTION

CODE: GC 5105

LEVEL (UG-undergraduate/M-master) AND YEAR OF STUDY (1,2,3,4)				M2	SEME	STER	I	STATUS (CO-COMPULSORY/OP-OPTION	NAL)	OP	
NUMBER OF HOURS/ WEEK		TOTAL HOURS/ SEMESTER	Tot Hour Indivi Wo	S OF DUAL	CRED	ITS	EVALUATION TYPE (D-DURING THE SEMESTER, C-COLLOQUIUM, E-EXAM, M- MIXT)	LANGU	IAGE		
1		1		28	15	2	6		Μ	Engl	sh

	POSITION, NAME AND SURNAME	DEPARTMENT	
LECTURER	PhD Reader Traian Gavriloaiei	Geology	

PREREQUISITES Atmospheric Geochemistry; Environmental Geochemistry

OBJECTIVES	 To develop the assimilation, transfer and investigation abilities for atmospheric data analyses; To understand the complexity of the chemical phenomena that take place in the atmosphere; To establish and to use the most adequate methods in the quantitative analysis; to identify the main rules which lay at the basis of chemical processes from the atmosphere.
COURSE CONTENTS	 Inorganic pollutants in the atmosphere. Introduction. Atmospheric particles. Physico-chemical composition of atmospheric particles. Emission and effects of atmospheric particles. Atmogeochemical cycle of carbon, sulphur and nitrogen oxides. Atmospheric pollution with metals (factors, speciation, transport and sedimentation, rare metals). Wet and dry deposition in the atmosphere. Acid rain. Organic pollutants in the atmosphere (natural and atrophic sources, pollutants from oil, coal industry and biomass). Producing and effects of atmospheric smog. Tropospheric models for prediction of atmospheric pollution.
PRACTICAL 1. Statistical interpretation of atmospheric data. PRACTICAL 2. Analytical methods for gases. 3. Analytical methods for particulate material from the atmosphere.	
TEACHING METHODS	Lectures, discussions, problematize, learning through discovery

RECOMMENDED READING	 Brasseur G. P., Prinn R. G., Pszenny A. P. (eds.) (2003). Atmospheric Chemistry in a Changing World Springer Verlag Berlin. Meszaros E. (1999). Fundamentals of Atmospheric Aerosols Chemistry, Akademiai Kiado, Budapesta. Zellner R. (ed.) (1999). Global Aspects of Atmospheric Chemistry, Springer Verlag, Berlin.
	Meszaros E. (1999). Fundamentals of Atmospheric Aerosols Chemistry, Akademiai Kiado, Budapesta.

	Conditions	Attending courses, practical works and seminars
ASSESSMENT	Criteria	Cumulative evaluation
METHODS	Way of evaluation	Evaluation during the semester (VP) + examination (Ex)
	Formula of the final mark	0.75 E + 0.25 D