COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iaşi	Course title	
Faculty	Physics	BIOMATERIALS a	ınd
Department	Physics	BIOCOMPATIBIL	TY
Domain	 Plasma Physics, Spectroscopy and Self-Organization Biophysics and Medical Physics 	Course category (FC/SC/CC ¹): SC	Term (1-4): 3
Level	Postgraduate (MA)	Course type (Co/El/F ²): CO	

I. Course structure

Nu	umber of ho	ours/we	eek	Credits	Total class hours/ semester	Total hours of individual activity	Examination type (C/Ex/CE ³)	Teaching language
Course	Seminar	Lab.	Project	6	56	124	Ex	English
2		2	-					

II. Instructors

	Academic	Scientific	Name and surname	Faculty position (tenure/
	degree ⁴	degree		associate - organization)
Course	Prof.	Dr.	Nicoleta DUMITRASCU	tenure
Seminar				
Laboratory	Teaching assist.	Dr	Ionut Topala	tenure

III. Prerequisites

- Anatomy and biochemistry generalities ٠
- Physics of solid state •
- Elements of plasma physics

IV. Course objectives

- 1. Description of classes of biomaterials used in medicine and specific requirements.
- 2. Understanding of the concept of biocompatibility and the methods for biomaterials testing.
- 3. Knowledge of the methods for biocompatibility improvement and practical aspects of biomedical devices: sterilization, manufacturing, clinical trials and ethical issues, price of implants and allocation of resources.

V Course content

Course	1. Fundamentals of biomaterials science. Concept of biocompatibility. Classes of					
Course						
	biomaterials used in medicine, basic properties, medical requirements and clini significance. Desinfection and sterilization of biomaterials.					
	2. Physico-chemical properties of biomaterials: mechanical (elasticity, yield stress,					
	ductility, toughness, strength, fatigue, hardness, wear resistance), tribological					
	(friction, wear, lubricity), morphology and texture, physical (electrical, optical					
	magnetic, thermical), chemical and biological properties.					
	3. Elements in contact with the surface of a biomaterial: blood composition					
	plasma proteins, cells, tissues.4. Phenomena at the biointerfaces. Molecular and cellular processes with livit					
	environment, blood-materials interaction, short and long term reactions to the body.					
	5. Testing of biomaterials: <i>in vitro</i> , <i>in vivo</i> preclinical and <i>in vivo</i> clinical tests.					
	6. Technologies of biomaterials processing, as implants and medical devices					
	improvement of materials biocompatibility by plasma processing.					

 $^{^{1}}$ FC – fundamental course, SC – specialty course, CC – complementary course 2 Co – compulsory, El – elective, F – facultative 3 C – colloquium, Ex – exam, CE – colloquium AND exam

⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

	7. FDA requirements, standards on the biological evaluation of medical devices					
	(ISO-10993) and implications to applications in human. Practical aspects of					
	biomedical devices: manufacturing, storage quality, regulatory and ethical issues,					
	price of implants and allocation of resources.					
Seminar						
Laboratory						
	The practical works (laboratories) are designed to create skills related to the					
	characterization and testing of biomaterials for a specific medical application:					
	biomaterials for hard-tissue replacement, dentistry, biomaterials for soft-tissue					
	replacement, in ophtamology, heart grafts, biomaterials with specific functions such as					
	membranes for drugs and blood, dialysis, pacemakers etc.					
	New technologies of biomaterials processing will be presented in relation with specific					
	applications: immobilization of biological active species (antibiotics, antibacterial					
	agents, anticoagulants, enzymes), improvement of the materials biocompatibility					
	associated with the blood compatibility and clotting sequences.					
	6 hours are focused on a discussion and detailed presentation of relevant scientific					
	papers, or hypothetical/practical case studies (implants in orthopedic, ophthalmology,					
	sutures etc.). The discussions will largely correspond to the lectures topic and will also					
	include more general topics such as presentation skills and writing.					
v I. Iviinimai	required references					

1. H.Boenig, *Fundamentals of Plasma Chemistry and Tehnology*, Technomic Publishing Co.Inc. Lancaster Basel, 1990.

2. Practical Surface Analysis, 2- edition, Edited by D.Briggs, M.P.Seah, J.Wiley & Sons Ltd, 1990.

3. Biomaterials Science, An Intoduction to Materials in medicine, Eds. B. D. Ratner and A. S. Hoffman, Academic Press, New York, 1996.

4. *Plasma-surface modification of biomaterials*, P.K.Chua, J.Y.Chena, L.P.Wanga, N.Huang, Elsevier Science B.V, 2002.

5. XXX – Articles about *Biomaterials and Biocompatibility*.

VII. Didactic methods

Lectures, discussions, practical work, didactic films.

VIII. Assessment	i
------------------	---

Pre-conditions	Attendance (30% from the final grade), active participation to class				
	activities				
Exam dates	1 st Assessment	8 th week			
	2 nd Assessment	16 th week			

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	Written paper	50%
Seminar	Presentation of a research project	30%
Laboratory	Practical work	20%