COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	DESIGN OF COMPUTER		
Department	Physics	ALGORITHMS		
Domain	Physics	Course category (FC/SC/CC ¹): SC	Term (1-4):	
Level	Postgraduate (MA)	Course type (Co/El/F ²): Co	1	

I. Course structure

			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
			semester	activity	$(C/Ex/CE^3)$			
Course	Seminar	Lab.	Project	6	56	124	Ex	English
2	-	2	-					_

II. Instructors

	Academic degree ⁴	Scientific degree	Name and surname	Faculty position (tenure/ associate - organization)
Course	Associate prof.	Dr.	Vasile TURA	tenure
Seminar				
Laboratory	Associate prof.	Dr.	Vasile TURA	tenure
III D	• •,			

III. Prerequisites

Basic knowledge in C++ programming. Introductory courses in algebra and calculus.

IV. Course objectives

The course offers students an introduction to design and analysis of algorithms. Students will learn the basic principles of algorithms design and will compare the methods of analyzing these algorithms. Besides, students will learn about the data structures that optimize the operation of each type of algorithm. The knowledge gained will be used by students to design and analyze basic algorithms used to solve typical search and sorting problems.

V. Course content

v. Course con	itent					
Course	Introductory mathematics: growth of functions, summations, recurrences, sets, graphs, trees,					
	probabilistic analysis. Analysis of algorithm efficiency. Algorithm design paradigms: Divide-					
	and-Conquer, Dynamic Programming, The Greedy Method, Backtracking, Branch-and-bound.					
	Computational complexity. Sorting and searching algorithms.					
Seminar						
Laboratory	Sequential search. Binary search. Matrix operations optimization. Recursive Algorithms.					
	Recursive merge-sort. Merge-sort in-place. Computation of Fibonacci numbers. Quicksort.					
	Optimal search-trees. Kruskal and Dijkstra algorithms. Selection; probabilistic selection.					
	Traveling Salesman Problem. The knapsack problem. Parallel algorithms: finding a maximum.					
	Parallel merge-sort.					

VI. Minimal required references

1. T. H. Cormen, C.E. Leiserson, R.L. Rivest: Introducere în algoritmi, Libris Agora, 2000.

2. D. Lucanu, Structuri de date si algoritmi, Editura Universității "Al. I. Cuza" Iași, 2004.

3. R. Neapolitan, K. Naimipour, Foundations of Algorithms Using C++ Pseudocode, 3d ed., Jones and Bartlett Publishers, 2004.

4. A. Drozdek, Data structures and algorithms in C++, 2nd ed., Brooks/Cole, 2001.

VII. Didactic methods

Dialog-based lectures, problems solving, individual study, homework.

VIII. Assessment

Pre-conditions	All laboratory exercises should be passed obtaining the minimal grade 5.			
Exam dates	1 st Assessment	November		

¹ FC – fundamental course, SC – specialty course, CC – complementary course

² Co – compulsory, El – elective, F – facultative

 $^{^{3}}$ C – colloquium, Ex – exam, CE – colloquium AND exam

⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

2 nd Assessment	February

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	Oral examination.	50%
Seminar		
Laboratory	Laboratory exercises.	50%