COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	FUNDAMENTALS OF		
Department	Physics	MATHEMATICAL PHYSICS		
Domain	Physics	Course category (FC/SC/CC ¹): FC	Term (1-4):	
Level	Postgraduate (MA)	Course type (Co/El/F ²): Co	1	

I. Course structure

			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
			semester	activity	$(C/Ex/CE^3)$			
Course	Seminar	Lab.	Project	6	56	126	Ex	English
2	2							

II. Instructors

	Academic degree ⁴	Scientific degree	Name and surname	Faculty position (tenure/ associate - organization)
Course	Prof.	Ph.D.	Ciprian Dariescu	Tenure/Al. I. Cuza
				University
Seminar	Prof.	Ph.D.	Ciprian Dariescu	Tenure/Al. I. Cuza
				University
	Lect.	Ph.D.	Daniel Radu	Tenure/Al. I. Cuza
				University
Laboratory				

III. Prerequisites

Mathematical Physics Equations, Differential Equations, Functional Analysis, Algebra.

IV. Course objectives

It intends to supply good knowledge on basics and main results of mathematical physics.

By its role, this course should prepare the student for a Ph.D. in Physics.

Therefore, the modern views and the checked formalisms are constantly emphasized as far as possible.

V. Course con	ntent					
Course	I. Elliptic Equations					
	Laplace and Poisson Equations, boundary conditions, types of solutions,					
	Green identity, fundamental solution of Laplace-Beltrami operator,					
	Green functions and Poisson formula, potentials method,					
	Laplace –Fourier method of variables separation,					
	Basic symmetries and special functions: spherical functions, Bessel functions, hypergeometric functions.					
	II. Parabolic equations:					
	General physical processes, Heat propagation equation, solutions and Laplace-Fourier method, heat propagation equation in entire space, fundamental solution of heat propagation operator.					
	III. Hyperbolic equations:					
	physical general processes, Wave equation and standard conditions,					

¹ FC – fundamental course, SC – specialty course, CC – complementary course
² Co – compulsory, El – elective, F – facultative
³ C – colloquium, Ex – exam, CE – colloquium AND exam
⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

	Laplace-Fourier method and types of solutions,				
	IV. Systems of linear and non-linear differential equations.				
	Examples.				
Seminar	Applications to the topics presented at the course; A range of useful mathematical ideas and tools, with direct applications in physics. Mathematical formulation of quantum mechanics and quantum field theory.				
Laboratory					

VI. Minimal required references

- V. Barbu. Procese la limita pentru ecuatii cu derivate partiale. Ed. Academiei Romane, Bucuresti, 1993.
- A.N. Tihonov, A.A. Samarski, Ecuatiile fizicii matematice, Ed. Tehnica, Bucuresti 1956
- V.S. Vladimirov, Ecuatiile fizicii matematice. Ed. St. Si Ped, Bucuresti, 1980.
- L. D. Landau, E. M. Lifshitz, *The Classical Theory of Fields*, IV-th Edition, Reed Educational and Professional Publ. 2000.
- W. Thirring, Classical Mathematical Physics. Dynamical systems and tools, Springer, 2003.

VII. Didactic methods

Lectures,	
Thematic Debates,	
Applications	

VIII. Assessment

Pre-conditions	Attendance,			
	Active participation to class activities,			
	Free presentation of a project,			
	Obtaining the minimal grade 5 for each ongoing assessment			
Exam dates	1 st Assessment	November		
	2 nd Assessment	January		

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	written	50%
Seminar	oral	50%
Laboratory		