COURSE TITLE

GEOCHEMISTRY OF CONTINENTAL WATERS

CODE: GC 5101

LEVEL (UG-undergraduate/M-master) AND YEAR OF STUDY (1,2,3,4)				M2	SEME	ESTER	I	STATUS (CO-COMPULSORY/OP-OPTION	NAL)	CO	
NUMBER OF HOURS/ WEEK			F EK	TOTAL HOURS/ SEMESTER	HOURS OF INDIVIDUAL WORK		CREDITS		(D-DURING THE SEMESTER, C-COLLOQUIUM, E-EXAM, M- MIXT)	LANGUAGE	
L	S	Ρ	Pr.								
2		2		56	184		8		М	Engl	ish

	POSITION, NAME AND SURNAME	DEPARTMENT	
LECTURER	PhD Professor Gheorghe Popa	Geology	

	PREREQUISITES	Mineralogy; Petrology; Analytical Chemistry
--	---------------	---

	Knowledge of hydrogeochemical processes within the framework of continental zones					
OBJECTIVES	Evolution of the chemistry of natural waters					
	Hydrogeochemical balance sheets					
	General notions: classification of waters according to genesis, chemistry, localisation					
	The geochemistry of continental hydrogeochemical reservoirs					
	The chemistry of precipitation					
COURSE	The evolution of the chemistry of natural waters; sources and intensity of their contamination					
CONTENTS	Hydrogeochemical processes at soil level					
CONTLINIS	Hydrogeochemical processes in various types of rocks					
	Hydrogeochemical processes in river systems (including estuaries)					
	Hydrogeochemical processes in lakes					
	Hydrogeochemical balance sheets.					
	Determination of the chemistry of natural waters					
PRACTICAL	Establishment of a hydrogeochemical balance sheet on the basis of one's own analyses					
	Point estimation of the valorisation field of the analysed water					
TEACHING	Lectures with projections (Power Point);					
	In practical work, each student will receive, at the beginning of the term, a water sample which he/she shall					
	analyse and interpret					
	Drever J.I. (1997). The geochemistry of natural waters. Prentice Hall, New Jersey.					
	Fetter C.W. (1994). Applied hidrogeology Macmillan College Pub. Co., New York.					
	Fetter C.W. (1999). Contaminant hidrogeology Prentice Hall, New Jersey.					
	Popa Gh. (2002). Hidrogeochimie. Ed. Universității "Al.I.Cuza", Iași.					
	Popescu Rodica (2000). Hidrogeochimie. Ed. Univ. din București.					

	Conditions	Integral fulfillment of lab work obligations	
	Criteria	Precision and interpretation of lab analyses	
		Each student will be marked for each laboratory session	
ASSESSMENT	Way of evaluation	These partial marks will be used to calculate an average (A) that represents an	
		evaluation of activity for practical work each term	
		At the end of the term, the student will sit a written examination on what has been	
		taught in the course (mark B)	
	Formula of the final mark	The final mark (FM) will be calculated as a weighted average:	
		Practical work 50%; Examination result 50%; FM = 0.50A + 0.50B	