COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title
Faculty	Physics	Introduction to the physics of polymers.
Department	Physics	Polymer materials with special properties
Domain	Physics	Course category (FC/SC/CC ¹): SC Term (1-4): 4
Level	Postgraduate (MA)	Course type (Co/El/F ²): El

I. Course structure

			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
			semester	activity	$(C/Ex/CE^3)$			
Course	Seminar	Lab.	Project	6	56	124	С	English
2	-	2	-					_

II. Instructors

	Academic degree ⁴	Scientific degree	Name and surname	Faculty position (tenure/ associate - organization)
Course	Assoc. Prof.	PhD	Gabriela Borcia	tenure
Seminar	-	-	-	-
Laboratory	Assoc. Prof.	PhD	Gabriela Borcia	tenure

III. Prerequisites

Fundamental knowledge on the physics of atoms and molecules

IV. Course objectives

Learn the fundamental knowledge on the physics of polymer materials, their volume and surface properties; knowledge on polymer materials with special properties, obtained by various physical and chemical methods, and of their performances; ability to use analysis techniques to identify the properties of polymer materials of interest in modern applications; work in a team for solving experimental and technological issues; identify and use bibliographic resources for continuous formation

V. Course content

Course	General notions, classification criteria. Structure of macromolecular compounds. Aggregation					
	and phase states, transition temperatures. Elements of polymerization reaction					
	thermodynamics. Physico-chemical properties of polymer materials of interest in applications.					
	Polymer materials with special properties: intelligent composite materials, interpenetrated					
	polymer networks, liquid crystals in various materials, drug carrier polymers, metalocenes,					
	polymers with biomedical applications, polymer membranes, carbon fibers and carbon fiber					
	composites, conductor and semiconductor polymers, polymer sensors, biodegradable					
	polymers. Techniques for complex polymer materials characterization. Applications in making					
	of polymers with selected surface properties					
Seminar	-					
Laboratory	Study on the surface chemical modification of polymer materials using Fourier transform					
-	infrared spectroscopy (FTIR)					
	Study on the modification, by surface treatment, of the degree of cristallinity of a polymer,					
	using X-ray diffactometry (XRD)					
	Polymer characterization by X-ray photoelectron spectroscopy (XPS). Analysis of XPS					
	spectra of complex polymer materials. Study on the surface chemical modification of polymer					
	materials using XPS					
	Study on the modification of polymer morphology, by surface treatment, using atomic force					
	microscopy (AFM)					
	Evaluation of the surface energy and surface energy components of polymer films and fibers.					
	using contact angle measurement					

 ¹ FC – fundamental course, SC – specialty course, CC – complementary course
² Co – compulsory, El – elective, F – facultative
³ C – colloquium, Ex – exam, CE – colloquium AND exam
⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

biologradable polymer material
Characterization of the surface properties of nanocomposite materials based on biodegradable polymers and clays

VI. Minimal required references

1. S. Dumitrescu, M. Dărângă, Fizica polimerilor, Ed. Institutului Politehnic Iași, 1989

2. M. Dărângă, C. Mihăilescu, M. Popa, M. Nicu, N. Bejan, Fizica polimerilor: introducere în știința materialelor polimerice, Editura Ex Libris, Brăila, 2000

3. Materials Today, revistă Elsevier B.V., 2006 - present, selected relevant papers

4. Progress in Polymer Science, revistă Elsevier B.V., 2006 - present, selected relevant papers

VII. Didactic methods

Lecture, class discussion, laboratory work

VIII. Assessment				
Pre-conditions	50% course attendance, 100% laboratory attendance, minimum grade 5 for the project			
Exam dates	1 st Assessment	8 th week		
	2 nd Assessment	16 th week		

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	Written exam	60%
Seminar	-	-
Laboratory	Project	40%