COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	IONIZING RADIATIONS		
Department	Physics	INTERRACTION WITH MATTER		
Domain	Physics	Course category (FC/SC/CC ¹): SC	Term (1-4): 1	
Level	Postgraduate (MA)	Course type (Co/El/F ²): Co		

I Course structure

1. Course structure								
			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
			semester	activity	$(C/Ex/CE^3)$			
Course	Seminar	Lab.	Project	6	56	124	C	English
2		2						

II. Instructors

	Academic degree ⁴	Scientific degree	Name and surname	Faculty position (tenure/ associate - organization)
Course	Lecturer	Ph. D.	Borcia Catalin-Gabriel	tenure
Seminar				
Laboratory	Lecturer	Ph. D.	Borcia Catalin-Gabriel	tenure

III. Prerequisites

Electricity and magnetism, Atomic and molecular physics, Nuclear physics, Dosimetry and radioprotection, Plasma physics

IV. Course objectives

Learn advanced knowledge of radiation interaction with matter; apply this knowledge for studying the transport of radiations through matter; apply the knowledge in practice; work in a team for solving experimental and technological issues; identify and use bibliographic resources for continuous formation.

V. Course content

Course	1) Fundamentals of ionizing radiation physics;			
	2) Interaction of hard charged particles with matter;			
	3) Interaction of light charged particles with matter;			
	4) Elements of electron beam dosimetry;			
	5) Interaction of photons with matter;			
	6) Elements of photon beam dosimetry;			
	7) Interaction of neutrons with matter;			
	8) Ionizing radiations transport thorough matter;			
	9) Elements of radiobiology;			
	10) Ionizing radiations applications;			
	11) Analysis and control techniques with ionizing radiations			
Seminar				
Laboratory	- discussion and analysis of knowledge given during classes			
	- Monte-Carlo simulation of practical problems;			
	- work for preparing a project presentation			

VI. Minimal required references

- [1] D. Mihăilescu, C. Borcia "Interacțiunea radiațiilor ionizante cu substanța. Partea I: radiații încărcate electric", Ed. Sedcom Libris, Iași, 2007.
- [2] E.B.Podgoršak "Radiation Physics for Medical Physicists", Springer Berlin Heidelberg, 2006, online at www.springerlink.com.
- [3] A. Bielajev "Fundamentals of the Monte Carlo method for neutral and charged particle transport", Univ. of Michigan, 2001.

² Co – compulsory, El – elective, F – facultative ³ C – colloquium, Ex – exam, CE – colloquium AND exam

¹ FC – fundamental course, SC – specialty course, CC – complementary course

⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

VII. Didactic methods
lecture, laboratory work, class discussion

VIII. Assessment

Pre-conditions	75% course attendance, 100% seminary attendance, project presentation.			
Exam dates	1 st Assessment	8 th week		
	2 nd Assessment	16 th week		

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	written	60
Seminar		
Laboratory	project presentation	40