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Education. John Conway is born in Liverpool in 1937. Mathematics is 

present in his life from his very early years: at the age of 4 he can 

enumerate the powers of 2; seven years later, in an interview for 

secondary school, his answer to the question, “What do you want to be 

when you grow up?” is “A mathematician at Cambridge” – which he 

achieved at age 27. During all his education in school and later on at 

Gonville and Caius College, Cambridge, his performance in Mathematics 

is outstanding, as it is in other subjects such as Astronomy. 

John Conway obtains his BA in 1959 and is awarded his 

doctorate in 1962 at Gonville and Caius College for the thesis 

“Homogeneous ordered sets,” supervised by Harold Davenport. The same 

year, he is appointed College Fellow and Lecturer in Pure Mathematics at 

the University of Cambridge. In 1975, John Conway is promoted to 

reader in Pure Mathematics and Mathematical Statistics, and in 1983, he 

becomes a Professor at Cambridge. In 1987, he is appointed to the John 

von Neumann Chair of Mathematics at Princeton University. 

As a student at Cambridge, John Conway undertakes research in 

number theory, proving, in his PhD thesis, the conjecture by the 18th-

century English mathematician Edward Waring that every integer can be 

written as the sum of 37 numbers, each raised to the fifth power. He is 

also interested in infinite ordinals. During his studies, he developed his 

interest in games. As John Conway says, “I used to feel guilty in 

Cambridge that I spent all day playing games while I was supposed to be 

doing mathematics. Then, when I discovered surreal numbers, I realized 

that playing games IS mathematics.” 
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Conway’s scientific contributions. It is difficult, indeed daring, to 

summarize Conway’s comprehensive contribution to Mathematics and its 

applications. We confine ourselves to presenting chronologically a few of 

his groundbreaking achievements, merely summarizing some of the 

numerous remaining ones. 

 

Group Theory. The fascinating story of the classification of finite simple 

groups began when Evariste Galois (1832) introduced the notion of a 

normal subgroup and found the first examples of simple groups. Finite 

groups are the mathematical abstraction of symmetry. For nearly 200 

years, some of the most brilliant mathematicians have contributed to the 

construction of what eventually became the classification theorem of 

finite simple groups. This states that every finite simple group either 

belongs to one of three types (cyclic group with prime order; alternating 

group of degree at least 5; simple group of Lie type) or is one of the 26 

sporadic simple groups (in clustering, the latter would be called outliers). 

The proof of this theorem, developed mostly between 1955 and 2004, 

spans tens of thousands of pages in hundreds of journal articles written 

by some 100 authors. 

A decisive contribution towards this classification theorem was to 

mark the spectacular start of John Conway’s acclaimed career as one of 

the outstanding mathematicians of our time. John Conway discovered 

three of the 26 sporadic groups – known as Co1, Co2 and Co3 – and all 

but two of the sporadic groups known by then can be obtained as the 

homomorphic image of subgroups of Co1. In Martin Gardner’s words, 
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“This is a breakthrough that has had exciting repercussions in both 

group theory and number theory.” 

In 1965, the Leech lattice was shown to provide a dense packing 

of hyperspheres in 24 dimensions. John Leech asked Conway, among 

others, to investigate the corresponding symmetry group. Mainly during 

one 12-hour session, Conway showed that the group of automorphisms 

of the Leech lattice, now known as Co0 (its order is 

8,315,553,613,086,720,000), when factored by its center, gives a finite 

simple group that was unknown at the time. This is the largest of the 

Conway groups, Co1, of order 4,157,776,806,543,360,000. Conway found 

two other new finite simple groups, Co2 (of order 42,305,421,312,000) 

and Co3 (of order 495,766,656,000), which are isomorphic to subgroups 

of Co1. 

In 1969 the first volume of the Bulletin of the London Mathematical 

Society published the full details of Conway’s landmark discovery. Finite 

simple groups are instrumental in studying groups in general and their 

applications are diverse and often spectacular. We mention here merely 

the relevance of sphere packings and simple groups to error-correcting 

codes. Over 15 years, Conway, together with former doctoral students 

from Cambridge – Robert Curtis, Simon Norton, Richard Paker and 

Robert Nilson – produced a complete list of all finite simple groups; the 

result was his 1985 book The Atlas of Finite Groups: Maximal Subgroups 

and Ordinary Characters for Simple Groups.  

John Conway is a not only a pioneer but also a visionary. In 1979, 

Conway, together with Simon Norton, made the famous “Monstrous 

moonshine conjecture” that relates discrete and non-discrete 

Mathematics. The conjecture was eventually proved in 1992 by Richard 
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Borcherds, who had been a Conway PhD student. The conjecture 

describes “the very strange connections” between the monster group M 

and modular functions. The monster group M is the largest sporadic 

finite simple group – more than 8*10**53 symmetries – containing as 

subquotients 20 of the 26 sporadic groups. Modular functions, and in 

general modular forms, appear in mathematical fields such as complex 

analysis (where they belong), algebraic topology and string theory. Thus, 

the now-proved conjecture ties the monster group M to various aspects of 

Mathematics and Mathematical Physics. Conway says, “The Monster is 

supported by a geometrical object in 196,883 dimensions; I would love to 

understand why the Monster is there”. 

 

The Game of Life. John Conway became widely known beyond the world 

of pure mathematics with his invention of a simple universal cellular 

automaton, which became hugely popular as the 0-players Game of Life. 

In conceiving it, Conway aimed at simplifying John von Neumann’s 

search of a universal cellular automaton. Von Neumann had devised a 

mathematical model involving intricate rules on a Cartesian grid with 

neighborhoods of five cells and 29 states. Conway managed to simplify 

von Neumann’s ideas into his Game of Life, which has basically three 

rules and two states. After a long elaboration on Go boards, Conway 

described the game to his friend Martin Gardner who, in turn, explained 

it in his October 1970 Mathematical Games column in Scientific 

American. As Martin Gardner later on put it, “The game made Conway 

instantly famous, but it also opened up a whole new field of 

mathematical research, the field of cellular automata.” 

Thousands of Life programs are currently available online and 
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new discoveries are reported (for example, in 2013, the first replicator in 

Conway's Game of Life was reported on Conwaylife.com; it produces a full 

copy of itself, including the instruction tape). But, while popularity may 

be interesting, Life has profound and far-reaching properties. To start 

with, it is computationally universal:  it can simulate any single-taped 

Turing machine. In other words, The Game of Life is theoretically as 

powerful as any computer with no memory/time constraints. Any 

question that can be answered to using Mathematics can be phrased as 

“Will a particular configuration of Life last indefinitely or not?” (Winning 

Ways for Your Mathematical Plays by Conway, Guy and Berlekamp, 

1982). In Life a “universal constructor” containing a Turing complete 

computer can be built that can produce copies of itself. On the other 

hand, by visualizing emergence (a complex behaviour arising from few 

and very simple rules), self-organization and self-replication in an 

accessible manner, the Game of Life is a paradigmatic tool for scientists 

in Economics, Computer Science, Biology or generative science in 

general. The Game of Life and other cellular automata have been used, 

for example, to model the role of DNA in transmitting information from 

one generation to the next. Through Life, the field of Artificial Life made a 

decisive leap forward. 

 

Surreal numbers. A truly astonishing discovery was Conway’s surreal 

numbers – a (now) straightforward completion of the system number 

containing integers, rationals, reals, complex and transfinite numbers. 

Real numbers were accepted for 200 years as the basis for developing any 

further number system. Conway came up with a simple and deep 

question: What if every two-person game is a number? (in a way, similar 
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to the idea behind Gödel numbers). The discovery came out of attempts 

to analyze the game of Go rather than of undertaking the abstract task of 

developing number systems. Conway noticed that, near its completion, a 

game could be seen as the sum of smaller games; this supported the idea 

that, from a certain point of view, some games have similarities with 

numbers; it is from this observation that the surreal numbers system 

emerged (or, rather, was unveiled). 

The surreal number system is an arithmetic continuum with the 

arithmetic properties of a (n ordered) field. It contains, besides the real 

numbers, infinite numbers (larger in absolute value than any positive 

real number) and infinitesimal numbers (smaller in absolute value than 

any positive real number). In von Neumann-Bernays-Gödel set theory, 

the surreal numbers are the largest possible ordered field; all other 

ordered fields, such as the rationals, the reals, the rational functions, the 

Levi-Civita field, the superreal numbers, and the hyperreal numbers, can 

be obtained as subfields of the surreals. 

Martin Gardner made a spectacular and conceptually accurate 

and appropriate comment: “It is an astonishing feat of legerdemain. An 

empty hat rests on a table made of a few axioms of standard set theory. 

Conway waves two simple rules in the air, then reaches into almost 

nothing and pulls out an infinitely rich tapestry of numbers that form a 

real and closed field. Every real number is surrounded by a host of new 

numbers that lie closer to it than any other ‘real’ value does. The system 

is truly surreal” [Gardner, Mathematical Magic Show, pp. 16--19]. And he 

continues ”I believe it is the only time a major mathematical discovery 

has been published first in a work of fiction.” Gardner was referring to 

Donald Knuth’s 1974 novelette Surreal Numbers: How Two Ex-Students 
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Turned onto Pure Mathematics and Found Total Happiness; not only was 

this discovery published in Knuth’s novelette, but also the very name 

“surreal numbers” was proposed (and eventually accepted by Conway 

himself, instead of “numbers”).Subsequently, Conway described the 

surreal numbers and used them in game analysis in his 1976 book On 

Numbers and Games. Surreal numbers redefined our general 

understanding of fundamental concepts such as number and game. 

 

Knot Theory − the mathematical study of the properties of knots– also 

benefited from Conway’s innovative ideas. His notation for knots is, in 

fact, an illuminating way of identifying knots in terms of their two-

dimensional components, the tangles, which he studied early in his 

career. Conway completed the knot tables up to 10 crossings and 

introduced the Conway knot, a new knot with 11 crossings that cannot 

be obtained from a combination of simpler knots. Deciding whether or 

not two knot diagrams represent the same knot is a main problem in 

knot theory; it is solved by using knot polynomials, which are invariants 

of the knot. John Conway showed (1969) that a version of the Alexander 

polynomial, the Conway-Alexander polynomial, can be computed using 

skein relations. From 1984, with the discovery of the Jones polynomial, 

Conway’s idea and results turned into a flourishing topic relating 

algebraic and geometric properties of knots. Jones-Conway polynomials 

generalize both Conway-Alexander polynomials and Jones polynomials 

 

Combinatorial game theory, a theory of partisan games (where some 

moves are available to only one player), was introduced by John Conway 

with Elwyn Berlekamp and Richard Guy, with whom he also co-authored 
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the book Winning Ways for Your Mathematical Plays (1982). Conway’s 

book On Numbers and Games (1976) lays out the mathematical 

foundations of combinatorial game theory. For partisan games, the 

Sprague–Grundy theorem cannot be used, which makes them more 

difficult to analyze than impartial games. On the other hand, using 

combinatorial game theory to analyze partisan games makes it possible 

to grasp the full significance of numbers as games (surreal numbers), 

which does not happen for impartial games. Over a hundred partisan 

games are discussed in Winning Ways for Your Mathematical Plays, 

almost all of them invented by John Conway and his team. 

 

Theoretical Physics. In 2006, John Conway and Simon Kochen 

published in Foundations of Physics a paper on their free will theorem. 

Forty years earlier, Bell’s no-go theorem showed the gap between 

quantum mechanics and classical mechanics in terms of hidden 

variables: “No physical theory of local hidden variables can ever 

reproduce all of the predictions of quantum mechanics” (C.B. Parker, 

McGraw-Hill Encyclopaedia of Physics, 2nd edition, 1994). The Kochen–

Specker theorem further restricted the kinds of hidden variable theories 

that would transfer the apparent randomness of quantum mechanics to a 

deterministic model with hidden states. The Conway-Kochen theorem 

provides a stunning version of the no-hidden-variables principle. It is 

based on three axioms, the first two of which are testable in quantum 

mechanics: one on the limitation of the speed for information 

propagation, one on the structure of the squared spin component of 

certain elementary particles, and the third that is a consequence of the 

quantum entanglement. In everyday language, the theorem states that, 



10 

under the circumstances described by the axioms, if two experimenters 

are free to decide what measurements they make then the outcome of the 

measurements cannot be determined by things that happened before the 

experiment took place. In Conway’s provocative wording: “If 

experimenters have free will, then so do elementary particles.” (In a 

subsequent paper, Conway and Kochen weakened the first axiom, thus 

strengthening their result into The Strong Free-Will Theorem.) Such a 

startling result catalyzed a new facet of a debate, one that had begun 

with the Einstein–Bohr polemic, among physicists, philosophers and 

mathematicians, a debate which is most likely to illustrate a major 

“paradigm shift” in Kuhn’s sense. 

There are many other creations of John Conway that deserve a 

proper comment rather than this all too brief enumeration: 

- in Algebra, particularly on quaternions (a number system that extends 

the complex numbers), icosians (a particular set of Hamiltonian 

quaternions invented with Neil Sloane) and octonions (Conway and 

Smith, On quaternions and octonions: their geometry, arithmetic, and 

symmetry, 2003); 

- in Geometry (the 64 convex uniform polychora, the grand antiprism); 

- in Algorithmics, starting from his 1971 book Regular Algebra and 

Finite Machines. John Conway’s best known algorithm may be the 

Doomsday Algorithm for very fast calculation of the day of the week for 

“any” date; he proposed a similar method for calculating the phase of the 

moon. The very simple and spectacular (if inefficient) 14-fraction prime-

number generator should also be mentioned. 
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Notations. Great mathematicians of all times have contributed to the 

development of mathematical notation as a communication tool for 

expressing coherently and systematically the results of their original work 

and for facilitating further developments. The citation for his Steele Prize 

states, “He has a rare gift for naming mathematical objects and for 

inventing useful mathematical notations.” Conway’s contributions to 

notations can be related to his own words: “My job is to simplify things” – 

a splendid echo of Constantin Brancusi’s words: “Simplicity? It is solved 

complexity”. 

John Conway invented notations for numbers (Conway chained 

arrow notation for exceedingly large numbers), also in geometric topology 

(the Conway notation for tabulating knots) and in geometry (the Conway 

polyhedron notation for describing polyhedra), the “orbifold notation for 

surface groups” (a simple way to enumerate crystallographic, spherical 

and wallpaper groups, algebraic structures that satisfy additional 

geometric properties). We would also include here Conway’s famous Look 

and Say Sequence (which lends itself to data compression): this sequence 

is actually defined as a notation that directly combines the rhetorical 

stage and the symbolic stage of mathematical notation. 

John Conway sees himself primarily as a professor. In his own 

words: “If it sits down, I teach it; if it stands up, I will continue to teach 

it; but if it runs away, I maybe not be able to catch up.” Conway’s most 

frequent and iconic image is one where he is surrounded by young 

students, during a challenging question-and-answer session or a game-

playing session. His 13 PhD students continued to work with him and 

pursue very successful careers. 
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Recognition of Conway’s work. John Conway’s outstanding 

contributions received not only admiration, but, as an expression of this, 

some of the most prestigious prizes in Mathematics. 

 In 1971, Conway was awarded the Berwick Prize by the London 

Mathematical Society. The Berwick Prize is awarded in recognition of “an 

outstanding piece of mathematical research published by the Society” in 

the eight years before the year of the award. Conway’s paper on sporadic 

finite simple groups was published only a year and a half before the 

deadline for the 1971 prize; the short interval between publication and 

award dates illustrates the instant enthusiastic reaction of the 

mathematical community. 

Ten years later, Conway was elected a fellow of the Royal Society 

of London. The Royal Society’s motto from Horace’s Epistles,Nullius in 

verba (“take nobody’s word for it”), can be seen as an indirect description 

of John Conway’s original, challenging and provocative results. 

In 1987, John Conway became the first recipient of the Pólya Prize 

of the London Mathematical Society. According to the LMS regulations, 

“The Pólya Prize is awarded in recognition of outstanding creativity in, 

imaginative exposition of, or distinguished contribution to, mathematics 

within the United Kingdom”; not only was John Conway the first recipient 

of the prize, but one cannot help guessing that the main features of his 

work and results may have inspired those who established these 

conditions for its award. Conway is also a Fellow of the American 

Academy of Arts and Sciences (the American Academy); the members of 

this most prestigious learned society are among “the finest minds and 

most influential leaders”. 
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In 1994, John Conway was a main invited speaker at the 

International Congress of Mathematicians. Since 1897, the invited 

speakers at these Congresses have been those whose contributions to 

Mathematics were held in particularly high esteem. John Conway spoke 

about “Sphere Packings, Lattices, Codes, and Greed ” – in an exposition 

that is rigorous but still best described by Martin Gardner’s words above 

on the magic of Conway’s constructs: a theorem given without proof is 

turned into an axiom and eventually into a definition, while the 

spectacular final results show that integral lexicographic codes 

(lexicodes) are sphere packings and that winning strategies for games, in 

particular the Nimgame, can be described in terms of lexicodes or in 

terms of laminated lattices. 

The Nemmers Prize was established in 1994 by Northwestern 

University, envisioning the creation of a reward that would be as 

prestigious as the Nobel Prize in Mathematics, Economics, Medical 

Sciences and Music. It is worth mentioning that six of the 11 laureates of 

the companion Nemmers Prize in Economics subsequently received the 

Nobel Prize in Economics (Nobel Prize laureates are not eligible for the 

Nemmers Prize). The prize in Mathematics is awarded to “those with 

careers of outstanding achievement in the field of Mathematics as 

demonstrated by major contributions to new knowledge or the 

development of significant new modes of analysis.” In 1998, John 

Conway received this prize in Mathematics “for his work in the study of 

finite groups, knot theory, number theory, game theory, coding theory, 

tiling, and the creation of new number systems”. A statement from the 

citation for this third Nemmers Prize in Mathematics underlines the 

impact of his achievements in the mathematical community and beyond: 
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“Conway may well have the distinction of having more books, articles and 

web pages devoted to his creations than any other living mathematician.” 

He was also awarded the Leroy P. Steele Prize for Mathematical 

Exposition by the American Mathematical Society, in 2000.  

In 2001, John Conway received the Joseph Priestley Award from 

Dickinson College. This award, established in memory of Joseph 

Priestley, discoverer of oxygen, has been presented yearly since 1952 “to 

a distinguished scientist whose work has contributed to the welfare of 

humanity ..., recognizing outstanding achievement and contribution to 

our understanding of science and the world.” Conway received the award 

“for distinguished contributions to the field of applied and computational 

mathematics.” 

 

Conclusion. John Conway’s nomination as a Fellow of the Royal Society, 

where he was elected as a member in 1981, states that John Conway is 

“a versatile mathematician who combines a deep combinatorial insight 

with algebraic virtuosity, particularly in the construction and 

manipulation of ‘off-beat’ algebraic structures which illuminate a wide 

variety of problems in completely unexpected ways. He has made 

distinguished contributions to the theory of finite groups, to the theory of 

knots, to mathematical logic (both set theory and automata theory) and 

to the theory of games (as also to its practice)”. 

The juxtaposition of the words from the Steele Prize Citation and 

the title of the forthcoming biography by Siobhan Roberts, Genius at Play, 

seems to put John Conway’s groundbreaking achievements in 

Mathematics into the right perspective: “His joy in Mathematics is clearly 

evident.” Indeed, simple facts such as the lack of any new universal 
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automaton since the invention of Game of Life or the delay with which 

what is now considered an obvious and intuitive number system – surreal 

numbers − was discovered, point to the idea that playfulness may be 

instrumental in Mathematics. 

At the forefront of Mathematics, John Horton Conway has solved 

open problems, asked intriguing and inspiring mathematical questions, 

expanded existing results and defined new mathematical worlds in a 

brilliantly creative, sharply rigorous and usually spectacular way. His 

profound mathematical discoveries and inventions combine intellectual 

elegance and unexpectedness, the highest level of abstraction, and 

fruitful applications; they are at the same time illuminating and 

challenging. His results are accessible to top-level mathematicians and 

are instrumental in their work, while the applications of his results, 

which sometimes helped surpass limitations of current technologies, are 

visible or available to the widest audience. John Horton Conway 

embodies a rare kind of personality in science, one who is at the same 

time acclaimed by the leading scientific institutions and mathematicians, 

admired by amateur mathematicians, and widely known among laymen. 

 

Alma Mater Iassiensis, Alexandru Ioan Cuza University of Iaşi, has 

the joy and honour to solemnly confer the title of Doctor Honoris Causa 

to John Horton Conway, John von Neumann Professor, Emeritus, at 

Princeton University, a leading mathematician of our time, an outstanding 

professor and a prolific promoter of Mathematics and science at large. 
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The Laudatio Committee 

 

o Professor Vasile IŞAN, Rector of “Alexandru Ioan Cuza” University 

of Iaşi 

o Professor Viorel BARBU, Emeritus, “Alexandru Ioan Cuza”   

     University of Iaşi, Member of the Romanian Academy 

o Professor Solomon MARCUS, Emeritus, University of Bucharest,         

     Member of the Romanian Academy 

o Professor Ioan TOMESCU, Emeritus, University of Bucharest, 

Member of the Romanian Academy 

o Professor Sorin ISTRAIL, Julie Nguyen Brown Professor of 

Computational and Mathematical Sciences, Brown University  

o Professor Henri LUCHIAN,  Vice-Rector of “Alexandru Ioan Cuza” 

University of Iaşi 

o Professor Cătălin LEFTER, Dean of the Faculty of Mathematics 

o Adrian IFTENE, Dean of the Faculty of Computer Science, 

Associate Professor 

o Professor Constantin RUSU, President of “Alexandru Ioan Cuza” 

University Senate 
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