COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	LOW DIMENSIONAL SYSTEMS		
Department	Physics			
Domain	Simulation Methods	Course category (FC/SC/CC ¹):FC	Term (1-4):	
Level	Postgraduate (MA)	Course type (Co/El/F ²):Co	2	

I. Course structure

			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
				semester	activity	$(C/Ex/CE^3)$		
Course	Seminar	Lab.	Project	5	28	28	Ex	English
2		2						

II. Instructors

	Academic	Scientific	Name and surname	Faculty position (tenure/
	degree	degree		associate - organization)
Course	Professor	PhD	Iacomi Felicia	tenure
Seminar				
Laboratory	Professor	PhD	Iacomi Felicia	tenure

III. Prerequisites

Quantum mechanics, Physical statistics, Solid state Physics

IV. Course objectives

This course concerns artificial materials with substructure on the nanometer scale such that the electronic motion is restricted to two, one or zero dimensions. The emphasis is on semiconductor systems but also other low-dimensional systems will be discussed. The concepts and the underlying theory are introduced based on quantum mechanics and extended by the application to heterostructures.

V. Course content

Course	I Introduction in the physics of low dimensional systems				
Course	1. Introduction in the physics of low-dimensional systems.				
	Properties of materials & nanomaterials, role of size in nanomaterials.				
	II. Synthesis and characterization methods				
	Chemical and physical synthesis methods. OD, 1D and 2D systems, 3D nanocompozites.				
	High resolution diffraction, electronmicroscopic and spectroscopic methods used in low-				
	dimensional systems characterization				
	III. Fundamental properties of low-dimensional systems				
	Electronic Properties. Band structures.				
	Excitons in semiconductors. Excitons in low-dimensional systems. EMA, ETBM, EBOM				
	EPM methods. Substrate effects. Effect of surrounding medium. Experimental constraints for				
	theoretical models. Influence of cluster form on quantum size effect. Effect of deffects				
	Metal-insulator transitionisn semimetals quantum size effects				
	Optical Properties.Quantum confinement. Photoluminescence. Bleachind effects. Biexcitons.				
	Non-linear optical properties				
	Transport properties of 2D and 1D systems. Quantized conductance with Landauer-formalism.				
	Scattering phenomena in 1D.				
	IV Applications of low-dimensional systems.				
	Quantum devices with controlled band gap				
	Devices based on quantum phenomena and Coulomb blockade.				
	Photonics. Transparent electronics.				
	Spintronics. Nanoelectronics				
	Biological applications				

 ¹ FC – fundamental course, SC – specialty course, CC – complementary course
² Co – compulsory, El – elective, F – facultative
³ C – colloquium, Ex – exam, CE – colloquium AND exam
⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

Seminar					
Laboratory	1. Use of CaRine software for the study of:				
_	surfaces, interfaces, grain boundaries, multi-layers, stereographic projection, reciprocal				
	lattices in 2D, X-Ray diffraction patterns (XRD)				
	2. GAXRD method				
	3. Use of BandLab software to perform electronic structure calculations of crystalline				
	solids and nanomaterials				
	4. Study of quantum size effect on optical absorption				
	5. Application of Raman methods in structural studies				
	6. Use of ESR method in the study of transitional metals in low-dimensional systems				
	7. Utilization of XPSPEAK software to investigate the size effect on binding energy				

VI. Minimal required references

- [1] Martin T. Dove, Structure and dynamics, Oxford University press, 2002.
- [2] John Singleton, Band Theory and Electronic Properties of Solids, Oxford University press, 2001.
- [3] Stephen Blundell, Magnetism in condensed matter, Oxford University press, 2001.
- [4] F.Iacomi, Spectroscopia vibrațională a materialelor zeolitice, Ed. Stef, Iasi, 2007
- [5] L.David, C.Craciun, O.Cozar, V.Chis, Rezonanta Electronica de Spin. Principii. Metode. Aplicatii. Presa Universitara Clujeana, Cluj-Napoca, 2001
- [6] S. E. Lyshevski, Nano and Molecular Electronics, CRC Press Taylor & Francis Group 2007

VII. Didactic methods

Explaining, Demonstrating, Power Point Presentation

VIII. Assessment			
Pre-conditions	Attendance, active participation to lab activities, resolve homework		
Exam dates	1 st Assessment	April	
	2 nd Assessment	June	

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	written	60%
Seminar		
Laboratory	Practical work, homework.	40%