COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title	
Faculty	Physics	LOW TEMPERATURE P	LASMA
Department	Physics	PHYSICS AND APPLICA	TIONS
Domain	Physics	Course category (FC/SC/CC ¹): SC	Term (1-4):
Level	Postgraduate (MA)	Course type (Co/El/F ²): Co	3

I. Course structure

			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
			semester	activity	$(C/Ex/CE^3)$			
Course	Seminar	Lab.	Project	6	56	124	Ex	English
2		2						_

II. Instructors

	Academic degree ⁴	Scientific degree	Name and surname	Faculty position (tenure/ associate - organization)
Course	Lecturer	Dr	Claudiu COSTIN	tenure
Seminar				
Laboratory	Lecturer	Dr	Claudiu COSTIN	tenure

III. Prerequisites

Mechanics, Thermodynamics, Electricity and Magnetism, Basics of Plasma Physics, Plasma diagnosis.

IV. Course objectives

- broadening students spectrum of knowledge in plasma physics.

- students become familiar with different types of electrical discharges operating at low temperature.

- developing of theoretical and experimental competences regarding plasma physics applications.

V. Course co	ntent					
Course	1. Introduction. Different types of low temperature plasma. Applications.					
	2. Radio-frequency (RF) discharges. Capacitive RF discharge. Inductive RF discharge.					
	Matching circuits. Applications of RF discharges.					
	3. Microwave discharges. Electron-cyclotron resonance (ECR) discharge. Surface wave					
	discharges.					
	4. Dielectric barrier discharges. Atmospheric pressure plasmas. Decontamination of gaseous					
	waste. Surface treatments.					
	5. Magnetron discharge. Reactive sputtering in magnetron discharge. Basic mechanisms					
	(hysteresis effect, instability of the reactive sputtering process, stability criteria). Modelling					
	reactive sputtering in a plane magnetron discharge.					
	6. Magnetized plasma. Plasma diamagnetism.					
	7. Plasma processing materials. Etching, thin films deposition and coatings.					
	8. Dusty plasma.					
	9. Basics on plasma modelling and simulation.					
c ·						
Seminar						
Laboratory	1. Study of a thermo-ionic vacuum arc.					
	2. Study of a dielectric barrier discharge at atmospheric pressure.					
	3. Study of a microwave discharge.					
	4. LIF and laser absorption diagnosis methods used for the investigation of sputtered material in a magnetron discharge.					

 ¹ FC – fundamental course, SC – specialty course, CC – complementary course
² Co – compulsory, El – elective, F – facultative
³ C – colloquium, Ex – exam, CE – colloquium AND exam
⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

VI. Minimal required references

1. M. A. Lieberman and A. J. Lichtenberg, *Principles of Plasma Discharges and Material Processing*, John Wiley & Sons Inc., New York, Toronto, Singapore 1994

2. F. F. Chen and Jane P. Chang, Lecture Notes on Principles of Plasma Processing, Springer, 2003

3. I. I. Popescu, I. Iova, E. Toader, Fizica plasmei și aplicații, Ed. Științifică și Enciclopedică, București,

1981 VII. Didactic methods

Lecture, debate, problematization, demonstration, PC assisted projections. Laboratory experiment.

VIII. Assessment

Pre-conditions	Laboratory attendance (at least 70%), written report for every laboratory work, obtaining the minimal grade 5 for practical work.		
Exam dates	1 st Assessment	November	
	2 nd Assessment	February	

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	Oral	$35\% \ge 2$ assessments = 70%
Seminar		
Laboratory	Practical work	30%