COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	Methods of structural and biostructural		
Department	Physics	analysis		
Domain	Physics	Course category (FC/SC/CC ¹): SC	Term (1-4):	
Level	Postgraduate (MA) 1. Biophysics and Medical Physics; 2. Plasma Physics, Spectroscopy and Selforganization.	Course type (Co/El/F ²): Co	1	

I. Course structure

Nu	umber of ho	ours/we	ek	Credits	Total class hours/ semester	Total hours of individual activity	Examination type (C/Ex/CE ³)	Teaching language
Course	Seminar	Lab.	Project	6	56	124	Ex	English
2		2						

II. Instructors

	Academic	Scientific	Name and surname	Faculty position (tenure/
	degree ⁴	degree		associate - organization)
Course	Professor	PhD	Viorel MELNIG	tenure
Seminar				
Laboratory	Research	PhD	Laura OBREJA	associate - organization
	asistant			

III. Prerequisites

Elements of Biostructure, Molecular Physics, General Biophysics

IV. Course objectives

The ability of applying the knowledges concerning the way of achieving and analyse of polymer and biopolymer samples structures as: the biopolymers purification, the primary structure characterization of biopolymers, the characterization of the secondary biopolymers structure, mesoand nano-phase analyse through X-rays techniques, experimental determination of 3D biomolecules structure, 3D design techniques of biomolecules. The capacity to prospect, process and analyse information from variety of bibliographic sources and report research elaboration. The ability to generate new ideation concerning experimentally assays of analysis. Team skill worked for solving experimental and technological problems. Critical formulations ability considering the current stage from area, and looms new research directions. Personal and group's projects successfully capacity for initiated and administered; determination and sedulous in the realization of the tasks and of the responsibility.

V. Course content

11 000150 00	
Course	Molecular and biomolecular architecture. General concern about the structural and
	biostructural analysis possibilities. Molecular modelling possibilities. The samples
	preparation. Separation and purification methods. Biomolecules primary structure
	assessment methods. Mass spectrometry applied to biomolecules. Structure and
	biostructure X-rays diffraction analyse. IR structure analyse. Structure analyse through
	NMR techniques.
Seminar	

¹ FC – fundamental course, SC – specialty course, CC – complementary course

 $^{^{2}}$ Co – compulsory, El – elective, F – facultative

 $^{^{3}}$ C – colloquium, Ex – exam, CE – colloquium AND exam

⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

Laboratory	Revision (introduction) regarding composition and properties of biomolecules:		
	Structure and the properties of the proteins; Fibrous and globular proteins - specific		
	properties;		
	Primary structure determination by MALDI-TOF method;		
	Analysis possibilities by large-angle X-ray diffraction;		
	Secondary structure determination by small-angle diffraction;		
	Secondary structure determination by IR spectroscopy;		
	Possibilities of structural investigation by RMN techniques.		
VI Minimal	no aviand veferences		

VI. Minimal required references

Renee R. Alexander &, *Basic Biochemical Methods*, John Wiley & Sons, 1985. W. Schrepp; Harald Pasch. Maldi-Tof Mass *Spectrometry of Synthetic Polymers* (Springer Laboratory). Berlin: Springer-Verlag.

Blow, D. *Outline of Crystallography for Biologists*. Oxford: Oxford Univ. Press 2002 Wuthrich, K. *NMR of Proteins and Nucleic Acids*, Wiley-Interscience, New York, USA 1986. A. R. Leach, *Molecular Modelling: Principles and Applications*, 2001.

VII. Didactic methods				
magisterial lecture; debate; problematization; frontal experiment; conducted revelation				
VIII. Assessment				
Pre-conditions	course attendance, active participation	n to class activities; minimum eleven		
	laboratories attendance.			
Exam dates	1 st Assessment November			
	2 nd Assessment	January – February		

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	written exam	45%
Seminar		
Laboratory	laboratory colloquium;	20%
	project	35%