COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	Molecular Principles of Bioactive Systems		
Department	Physics			
Domain	Physics	Course category (FC/SC/CC ¹): SC	Term (1-4):	
Level	Postgraduate (MA) 1. Biophysics and Medical Physics	Course type (Co/El/F ²): Co	2	

I. Course structure

			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
				semester	activity	$(C/Ex/CE^3)$		
Course	Seminar	Lab.	Project	8	84	156	Ex	English
3		3						

II. Instructors

	Academic degree ⁴	Scientifi	Name and surname	Faculty position (tenure/
		c degree		associate - organization)
Course	Professor	PhD	Viorel MELNIG	tenure
Seminar				
Laboratory	Research asistant	PhD	Laura URSU	associate - organization
III Decenoquisites				

III. Prerequisites

General Chemistry, Cellular and Molecular Biology, Methods of Structural and Biostructural Analysis

IV. Course objectives

The ability to understand the relationship structure - function (reactivity, affinity, etc.), the main classes of biopolymers (proteins, nucleic acids, lipids, polysaccharides) that provides the morphological structure and functions of cells and supra-cellular structures of animal and vegetal systems. Ability to learn and apply knowledge from formal kinetics which applies in some areas of biological sciences and especially in metabolic processes. The ability to understand and apply knowledge about bioconversion energy issues in metabolic processes, which form the basis of evolution, development and self-organization of all biological organisms. The capacity to prospect, process and analyze information from variety of bibliographic sources and report research elaboration. The ability to generate new ideation concerning experimentally assays of analysis. Team skill worked for solving experimental and technological problems. Critical formulations ability considering the current stage from area, and looms new research directions. Personal and group's projects successfully capacity for initiated and administered; determination and sedulous in the realization of the tasks and of the responsibility.

V. Course content

Course	Types of Biopolymers: Hydrolysis and condensation reactions involved in the synthesis/cleavage					
course	of biopolymers; Structure and properties of proteins; Fibrous proteins and globular proteins -					
	specific properties; Structure and properties of nucleic acids; Structure and properties of					
	carbohydrates; Lipids, phospholipids – supramolecular assembly; Structure of membranes.					
	Proteins in solution: Thermodynamic equilibrium of biological aqueous solutions; The nature of					
	weak interactions (physical) in the biological environment (aqueous); The stability and equilibrium					
	of biopolymers self-assembled structures; General properties of enzymes. Kinetics of enzymatic					
	reactions: Chemical mechanisms of enzyme catalysis; The "steady state" approximation; Michaelis					
	- Menten kinetic type; Allosteric kinetic type; Dynamic analysis of enzyme systems: Enzymatic					
	and metabolic control setting; Types of models of Metabolic Control System. Terms of					
	spontaneous evolution of biological processes: Development of independent processes; Energetic					
	of passive transport; Evolution of coupled processes; Active transport energetic. Chemiosmotic					
	theory of protons "flow": Proton electrochemical potential measurements; Stoichiometric reactions					

¹ FC – fundamental course, SC – specialty course, CC – complementary course ² Co – compulsory, El – elective, F – facultative ³ C – colloquium, Ex – exam, CE – colloquium AND exam

⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

		involving proton transfer. Thermodynamics of complex bio-processes: Energy rating					
		bioconversion reactions; Determination of the calorie content of food; Thermodynamics of					
		oxidoreduction processes; Oxidoreduction processes in biological systems; Oxidative					
		phosphorylation; Photosynthesis; glycolysis; regulations of the bioenergetic processes.					
Ser	eminar						
La	aboratory L1: Force interactions in biomolecular systems; L2: The desalting of ethanol and water. A						
		colourful illustration of intermolecular forces; L3: Influence of pH of aqueous environment on					
		biomolecules. Amphoteric nature of amino acids and proteins; L4: Liquid – liquid equilibrium.					
		Nernst distribution law; L5: Cellulose degradation; L6: Hydrolysis of starch. Determination of					
		starch grain fraction; L7: DNA denaturation study; L8: Experimental determination of glucose					
		mutarotation constant; L9: Sucrose inversion; L10: Determination of glucose and sucrose by					
	colorimetric method; L11: Determining the caloric content of food by the bomb calorimetric						
	method; L12: Determination of oxygen consumption by suspensions of mitochondria.						
VI.	Minimal 1	required references					
1.	*L. Lehnii	ner, "Biochimie", Ed. Tehnică, București 1987;					
2.	Melnig, "Elemente de Termodinamică Chimică", Editura Universității "Al. I. Cuza" Iași, 1995;						
3.	R. Contor, P. R. Schimmel, "Biophysical Chemistry – The behaviour of biological macromolecules", Ed.						
	W. H. Freeman &, New York, 1980;						
4.	Viorel Melnig, Ana Garlea, Laura Obreja, Lucrari de laborator de Biostructura. Partea I: Proprietatile						
	solutiilor apoase, Alexandru Ioan Cuza University Press, Iasi, 2008 ISBN 978 - 973 - 703 - 300 - 0128.						
5.	Renee R. Alexander &, "Basic Biochemical Methods, John Wiley & Sons, 1985;						
6.	*Mircea - Odin Apostu, Viorel Melnig, Bazele termodinamice ale transportului prin membrane, Ed.						
	Universității Alexandru Ioan Cuza, Iasi, 2008 (212 pagini) ISBN 978-973-703-395-6.						
7.	D. E. Metzler, "Biochemistry – The chemichal reactions of living cells", Ed. Academic Press, New York,						

7. D. E. Metzler, "Biochemistry – The chemichal reactions of living cells", Ed. Academic Press, New York, San Francisco, London, 1977.

VII. Didactic methods

magisterial lecture; debate; problematization; frontal experiment; conducted revelation

VIII. Assessment

v III. I KSSUSSIIIUIU					
Pre-conditions	course attendance, active participatio	n to class activities; minimum eleven			
	laboratories attendance.				
Exam dates	1 st Assessment	8 th week			
	2 nd Assessment	16 th week			

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	written exam	45%
Seminar		
Laboratory	laboratory colloquium;	20%
	project	35%