COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title			
Faculty	Physics	NANO- AND MICROTECHNOLOGIES			
Department	Physics	IN SENSORS AND ACTUATORS MANUFACTURING			
Domain	Physics	Course category (FC/SC/CC ¹): SC Term (1-4): 1			
Level	Postgraduate (MA)	Course type (Co/El/F ²): El			
I. Course structure					

2		2						
Course	Seminar	Lab.	Project	6	56	124	С	English
			semester	activity	$(C/Ex/CE^3)$			
Number of hours/week					hours/	of individual	type	language
				Credits	Total class	Total hours	Examination	Teaching

II. Instructors

		<i>a</i> : : <i>a</i>		
	Academic	Scientific	Name and surname	Faculty position (tenure/
	degree ⁴	degree		associate - organization)
Course	Associate professor	Ph.D.	Brinza Florin	tenure
Seminar				
Laboratory	Associate professor	Ph.D.	Brinza Florin	tenure

III. Prerequisites

Solid state physics, Circuit devices or Electricity and Magnetism, Materials engineering and technology

IV. Course objectives

The main objective is to create a base of knowledge in the field of sensors and actuators. This base include suitable physical properties of materials used in sensor manufacturing, basic technologies of materials engineering, specific technologies for circuit devices manufacturing. The knowledge is extended to possibilities to translate sensor and actuators categories to micro- and nanoscale. After course, students are able to design, prepare and testing a sensor structure.

 $^{^1}$ FC – fundamental course, SC – specialty course, CC – complementary course 2 Co – compulsory, El – elective, F – facultative 3 C – colloquium, Ex – exam, CE – colloquium AND exam

⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

Laboratory	1. Pre	eparation of thin films using thermal evapo	ration and magnetron sputtering.				
·		reparation of thin films and nanostructured matrix using electrochemical methods.					
		btaining of photolithographic structures.					
	4. Exp	sperimental study upon structure and properties of thermal sensors.					
	5. Ex	perimental study upon structure and properties of pressure sensors.					
	6. Exp	perimental study upon structure and properties of gas sensors.					
	7. Exp	perimental study upon structure and properties of humidity sensors.					
	8. Exp	perimental study upon structure and properties of piezoelectric actuators.					
	9-13. N	Manufacture and sensing characteristics for a sensor structure - SM (assisted					
	individ	dual activity).					
	14. Communication of obtained results.						
VI. Minimal r	equired ref	erences					
1. Charles K	ittel, Introdu	ction to solid state physics, 8-th edition, Jo	ohn Wiley and Sons, 2004.				
2. Stephen B	leeby, Graha	m Ensell, Michael Kraft, Neil White, MEM	AS Mechanical Sensors, 2004, ARTECH				
HOUSE, IN	C., Norwood	1.					
3. Fraden, Ja	icob, Handbo	ook of modern sensors: physics, designs, an	nd applications–3rd ed., 2004, Springer-				
Verlag New	York.						
VII. Didactic	methods						
Course: multi	imedia assis	ted exposition and conversation					
Laboratory: l	ecture and	active methods (research and exploitation	on activity)				
VIII. Assessm	ient						
Pre-conditions		Attendance (all activities), active participation to laboratory activities					
Exam dates		1 st Assessment	November				
		2 nd Assessment	January				
		Assessment means and methods	Percentage of the final grade				
Exam/Colloqu	ium	colloquium	60%				

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	colloquium	60%
Seminar		
Laboratory	Communication of obtained results in SM	40%