COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	Nanotechnologies applied to integrated		
Department	Physics	circuits fabrication		
Domain	Physics	Course category (FC/SC/CC ¹): SC	Term (1-4):	
Level	Postgraduate (MA)	Course type (Co/El/F ²): El	3	

I. Course structure

			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
			semester	activity	$(C/Ex/CE^3)$			
Course	Seminar	Lab.	Project	5	56	94	С	English
2		2						_

II. Instructors

	Academic degree ⁴	Scientific degree	Name and surname	Faculty position (tenure/ associate - organization)
Course	Associate prof.	Ph.D.	Brinza Florin	tenure
Seminar				
Laboratory	Associate prof.	Ph.D.	Brinza Florin	tenure

III. Prerequisites

Nanotechnologies, Solid State Physics, Solid State Devices and Circuits

IV. Course objectives

The main objective is to create a base of knowledge in the field of IC manufacturing at down scales. This base include suitable physical properties of materials used in IC manufacturing, basic technologies of materials engineering, specific technologies for integrated circuit manufacturing. After course, students are able to describe technologies, special processes and problems in ultra high density and down-scale IC manufacturing.

V. Course con	ntent						
Course	A review of mains materials and technologies in solid state devices. Techniques						
	crystals growth, thin films deposition, epitaxial growth. Electrodepositing. Elementary						
	processes, terminology, physical phenomena at electrode-electrolyte interface. Formation of						
	solid phases; phenomena, theories, models. Industrial plants for electrodeposition. Thermal						
	evaporation. Basics of method. Equipments. Applications. Cathode sputtering. Basics.						
	Equipments for industrial production. Cathode sputtering types. Modern methods in thermal						
	evaporation. Evaporation using particles beam. Pulsed laser deposition. Epitaxial growth.						
	Basics of method. Experimental arrangement. Crystallographic requirements. Lithographic						
	techniques. Basics of lithographic method. Materials and equipments. Micro- and nano-						
	lithography. Selective chemical etching. Package of integrated circuits. Chip-edge bonding.						
	Cases classification. Packaging technologies.						
Seminar							
Laboratory	1. Obtaining thin films using thermal evaporation.						
	2. Nanostructured thin films obtained by electrodeposition.						
	3. Obtaining thin films by self-assembly technology.						
	4. Anodization of aluminium. Functionalization.						
	5. Obtaining lithographyc masks.						
	6. Microstructures by lithography.						
	7. Characterization of nanostructures.						
VI. Minimal	required references						
1. Charles K	Littel, Introduction to solid state physics, 8-th edition, John Wiley and Sons, 2004.						

^{2.} Kenneth J. Klabunde (Editor), Nanoscale Materials in Chemistry, John Wiley & Sons, Inc., 2001.

 $^{^1}$ FC – fundamental course, SC – specialty course, CC – complementary course 2 Co – compulsory, El – elective, F – facultative 3 C – colloquium, Ex – exam, CE – colloquium AND exam

⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

3. Stephen Beeby, Graham Ensell, Michael Kraft, Neil White, MEMS Mechanical Sensors, 2004, ARTECH HOUSE, INC., Norwood.

4. Ampere A. Tseng (editor), Nanofabrication. Fundamentals and Applications, World Scientific Publishing, Singapore, 2008.

VII. Didactic methods

Course: multimedia assisted exposition and conversation.

Laboratory: lecture and active methods (research and exploitation activity)

VIII. Assessment

Pre-conditions	Attendance (all activities), active participation to laboratory activities.		
Exam dates	1 st Assessment	week 8	
	2 nd Assessment	week 16	

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	Collloquium – 1st Assessment	30 %
	Reporting individual study results-2 st	30 %
	Assessment.	
Seminar		
Laboratory	Collloquium	40 %