COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	PHYSICS OF RADIOTHERAPY.		
Department	Physics	IRRADIATION TECHNIQUES		
Domain	Physics	Course category (FC/SC/CC ¹): SC	Term (1-4):	
Level	Postgraduate (MA)	Course type (Co/El/F ²): Co	4	

I. Course structure

			Credits	Total class	Total hours	Examination	Teaching	
Number of hours/week				hours/	of individual	type	language	
			semester	activity	$(C/Ex/CE^3)$			
Course	Seminar	Lab.	Project	8	84	156	Ex	English
3	-	3	-					

II. Instructors

	Academic	Scientific	Name and surname	Faculty position (tenure/
	uegiee	uegree		associate - organization)
Course	Medical	Dr.	Mihaela DULCESCU	associate
	Physicist			
Seminar				
Laboratory	Medical	Dr.	Mihaela DULCESCU	associate - "Sf. Spirodon"
	Physicist			Hospital

III. Prerequisites

Basic knowledge of Radiation Sources, Nuclear Physics, Dosimetry, Radiobiology.

IV. Course objectives

This course provides the necessary practical and theoretical background for the support of a radiotherapy physics service within radiotherapy.

V. Course content					
Course	I. Radiotherapy machines				
	(Cobalt machines, linear accelerators, therapy with proton beams);				
	II Radiotherany (informatics used in external exposure treatme				

(Cobut machines, medi accelerators, merupy with proton beams),
II. Radiotherapy (informatics used in external exposure, treatment planning, photon
beam therapy, electron beam therapy);
III. Conformal radiotherapy (generalities, patient identification, anatomic data
acquisition, beams definition, dose calculation and optimization, verification and
treatment realization, volumes and dose determination in conformal radiotherapy);
IV. Intensity-Modulated Radiation Therapy (principles and methods, importance of
radiation intensity modulation in radiotherapy, treatment planning, mathematic
modelling of IMRT, optimization algorithms);
V. Virtual simulation of the irradiation technique (technological possibilities,
medical imagery systems for anatomic data acquisition, the transfer of acquisitioned
images, informatics used in treatment planning);
VI. Portal imagery (different systems of portal imagery, comparison of portal
imagery, status, limits and future in portal imagery, real time systems in portal
imagery, computer programs, quality control, dosimetry through portal imagery);
VII. The treatment planning in three dimensions (necessary elements, informatics,
visualization methods, dose calculations methods, evaluation methods of 3D treatment
plan, advantages and disadvantages of using 3D system in treatment planning);
VIII. Time factor in radiotherapy, conformal radiotherapy in the treatment of

¹ FC – fundamental course, SC – specialty course, CC – complementary course ² Co – compulsory, El – elective, F – facultative ³ C – colloquium, Ex – exam, CE – colloquium AND exam

⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

	prostate cancer.						
	IX. Brachyteraphy (Systems of Implant Dosimetry, Implantation Techniques,						
	Afterloading, Quality Ansurance).						
	X. Radioprotection (Principles of radioprotection, Radiation protection surveys,						
	Administrative requirements, Technical requirements).						
Laboratory	Investigation of percentage dose distributions on the irradiation beam axis.						
	Determination of Tissue-Air Ratios (TAR).						
	Dosimetric calculation for different protocols of cancer treatment.						
	Quality control methods in radiotherapy.						
	Oncology data bases.						
	Calculation methods applied in the studies of cancer surviving patients.						
X7T X7 · · I							

VI. Minimal required references

[1] International commission on radiation units and measurements. ICRU Report 62, Prescribing, Recording. And Reporting Photon Beam Therapy, Bethesda, MD: ICRU Publications; 2000.

[2] Leksell L. Stereotaxic and surgery. Springfield, IL: Charles C. Thomas; 1967.

[3] Bamber JC, Tristan M. Diagnostic ultrasound in the physics of medical imaging. Web ed Adam Higler 1987;319/387.

[4] Abbatucci J, Quint R, Bloquel J, Roussel A, Delozier T. Technique de radiotherapie (photons – electrons) ed. l'ex-pansion scientifique francaise, paris, 1981.

[5] Tubiana M, Dutreix J, Dutreix A. bases physique de la radiotherapie et de la radiobiologie. masson ed. paris, 1963.

[6] Podgorsak E.B. Handbook for Teachers and Students. Review of Radiation Oncology Physics. AIEA, 1998.

VII. Didactic methods

Lectures, class discussion, problems solving, practical works.

VIII. Assessment

Pre-conditions	Attendance (20% from the final grade), active participation to class activities				
Exam dates	1 st Assessment	8 th week			
	2 nd Assessment	16 th week			

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	Written paper	50%
Seminar		
Laboratory	Presentation of a practical/research	30%
	project	