COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title	
Faculty	Physics	Quantum Generators	
Department	Physics		
Domain	Physics	Course category (FC/SC/CC ¹): SC	Term (1-4): 1
Level	Postgraduate (MA)	Course type (Co/El/F ²): Co	

I. Course structure

Number of hours/week		Credits	Total class hours/ semester	Total hours of individual activity	Examination type (C/Ex/CE ³)	Teaching language	
Course Semir	ar Lab. 2	. Project	6	56	124	Ex	English

II. Instructors

	Academic	Scientific	Name and surname	Faculty position (tenure/	
	degree ⁴	degree		associate - organization)	
Course	Lecturer	PhD	Pohoata Valentin	tenure	
Seminar					
Laboratory	Lecturer	PhD	Pohoata Valentin	tenure	

III. Prerequisites

Optics, Atomic and Molecular Physics, Plasma physics

IV. Course objectives

Learning the fundamental concepts of lasers generation, laser properties and its applications

V.	Course	content
• •	Course	content

Course	Classical electromagnetic theory of light. Light propagation in matter.				
	Natural bandwidth Lorentz profile.				
	Bandwidth enlargement mechanisms for dipole ensembles emission spectra: elastics and inelastic collisions, pressure and Doppler effects.				
	Quantum characterization of atomic systems.				
	Laser pumping schemes: with 3 and 4 levels				
	Optical resonators. Light amplification. Laser oscillations.				
	External Littrow resonator for diode lasers.				
	Kinetic equation of laser systems.				
	Steady states lasers.				
	Elements of nonlinear optics.				
Seminar					
Laboratory	y Fabry-Perot interferometer. Optical resonators.				
	Gaussian laser profile. Oscillation modes: longitudinal and transversal.				
	He-Ne laser. Applications.				
	Nitrogen laser.				
	Argon laser.				
	Solid state laser: (YAG-Nd) and ruby laser				

 ¹ FC – fundamental course, SC – specialty course, CC – complementary course
 ² Co – compulsory, El – elective, F – facultative
 ³ C – colloquium, Ex – exam, CE – colloquium AND exam
 ⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

Excimer laser XeCl. Laser ablation. Extended cavity diode laser. Littrow configuration.
Extended cavity diode laser. Littrow configuration.
Diode laser. Applications:
Diode laser. Applications: Atomic absorption profile in plasma (Doppler measurements);
Laser induced fluorescence in plasma (LIF)

VI. Minimal required references

Gh. Singurel, *Fizica laserilor*, Ed. Univ. Al. I. Cuza, Iaşi (2001)
Wolfgang Demtroder, *Laser Spectroscopy*, Ed. Springer New York, (1998)
M. Strat, Georgeta Strat, *Spectroscopie şi laseri*, Ed. Univ. Al. I. Cuza, Iaşi (2001)
A. Eliaşevici, *Spectroscopie atomică şi moleculară*, Ed. Acad. Române, Bucureşti (1966)

VII. Didactic methods

Course exposes, representative's experiments and consultations

VIII. Assessment

Pre-conditions	Active participation to class activities		
Exam dates	1 st Assessment	November	
	2 nd Assessment	January– February	

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	written	50 %
Seminar		
Laboratory	practical work	50 %