COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	Cuufaan Ameliinia Mathada		
Department	Physics	Surface Analysis Methods	/sis wethods	
Domain	Physics	Course category (FC/SC/CC¹): SC	Term (1-4): 2	
Level	Postgraduate (MA)	Course type (Co/El/F ²):Co		

I. Course structure

Nu	ımber of ho	ours/we	eek	Credits	Total class hours/ semester	Total hours of individual activity	Examination type (C/Ex/CE ³)	Teaching language
Course	Seminar	Lab.	Project	6	56	124	Ex	English
2	-	2	-					

II. Instructors

	Academic	Scientific	Name and surname	Faculty position (tenure/
	degree ⁴	degree		associate - organization)
Course	Professor	PhD	NEAGU Maria	tenure
Seminar	-	-	-	-
Laboratory	Lecturer	PhD	POHOATA Valentin	tenure

III. Prerequisites

Mechanic and acoustics, Electricity, Magnetism, Optics.

IV. Course objectives

Imparting knowledge concerning fundamentals on physical principles and mesurement methods used for the surfaces characterisation. Understanding the theoretical knowledge by experiments. Capacities development for establishing measurement methods.

V. Course content

Course	Surface properties. Optical microscopy. Interferometric methods. Elipsometric methods.				
	Holographic methods. Magneto-optical methods. Atomic force microscopy. Diffraction methods.				
	Fourier transform Infrared Absorption Spectroscopy: Attenuated total reflection (ATR) and				
	Diffuse reflectance (DRIFTS). Auger electrons spectroscopy. Photoelectrons spectroscopy. Raman				
	spectroscopy. Scanning electronic microscopy.				
Seminar	-				
Laboratory	Study of the surfaces by optical microscopy. Determination of the optical constants and the				
	thickenss of the thin films using the ellipsometry. Determination of the magneto-optic Kerr				
	rotation and ellipticity for the soft magnetic thin films. Linnik interferometer: the study of the				
	surfaces and determination of the thin films thickenss. Recording of the surface magnetic				
	hysteresis of the magnetic thin films by magneto-optical Kerr effect. The study of the surfaces				
	by atomic force microscopy. Recording and analysis of the oscillation spectra by attenuated				
	total reflection method. Recording and analysis of the spectra by diffuse reflectance method.				
	Study of the surfaces by scanning electron microscopy.				

VI. Minimal required references

1. J. M. Walls, R. Smith, Surface science techniques, Elsevier Science Ltd (1994)

2. A. Eliașevici, Spectroscopie atomică și moleculară, Editura Academiei Române, București (1966)

FC – fundamental course, SC – specialty course, CC – complementary course
Co – compulsory, El – elective, F – facultative
C – colloquium, Ex – exam, CE – colloquium AND exam
Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

3. R. M. A. Azzam, N. M. Bashara, *Ellipsometry and polarized light*, North Holland Physics Publishing (1987)

VII. Didactic methods

Lecturing. Laboratory experiments.

VIII. Assessment

Pre-conditions	Active participation to class activities.			
Exam dates	1 st Assessment	8 th week		
	2 nd Assessment	16 th week		

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	written	50%
Seminar	-	-
Laboratory	laboratory colloquium	50%