COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title		
Faculty	Physics	TRANSPARENT AND CONDUCTIVE		
Department	Physics	OXIDE SEMICONDUCTOR THIN FILMS		
Domain	Advanced Materials. Nanotechnologies	Course category (FC/SC/CC¹):SC	Term (1-4): 2	
Level	Postgraduate (MA)	Course type (Co/El/F ²):El		

I. Course structure

Nı	umber of ho	ours/we	eek	Credits	Total class hours/ semester	Total hours of individual activity	Examination type (C/Ex/CE ³)	Teaching language
Course	Seminar	Lab.	Project	5	28	28	Ex	English
2		2						

II. Instructors

	Academic degree ⁴	Scientific degree	Name and surname	Faculty position (tenure/ associate - organization)
Course	Professor	PhD	Iacomi Felicia	tenure
Seminar				
Laboratory	Professor	PhD	Iacomi Felicia	tenure

III. Prerequisites

Quantum mechanics, Physical statistics, Solid state Physics

IV. Course objectives

This course concerns deposition and characterization methods for transparent and conductive oxide thin films. Electrical and optical properties are described. Theoretical models are prezented. TCO thin film applications are discussed.

V Course content

v. Course co	V. Course content						
Course	I. Introduction in the physics TCO thin films.						
	II. Experimental techniques for TCO thin films depozition: Vacuum thermal						
	evaporation, DC and RF sputtering, piroliza-spray, spin-coating, CVD, bath chemical						
	depozition						
	III. Influence of deposition conditions and substrate nature on the structure, morphology						
	and electrical and optical properties of TCO thin films						
	IV. Influence dopands on the structure and electrical and optical properties of TCO thin						
	films. p- and n- type TCO for electronic devices						
	V. Multilayered structures. Applications (transparent electronics, optoelectronics,						
	sensors).						
Seminar							
Laboratory	I. TCO thin films, in the systhem In _{2-(x+y)} Sn _x Zn _y O ₃ , depozited by vacuum thermal evaporation method on different substrates						
	II. Depozition of p-type TCO thin films, in the system Ni _{1-x} Co _x O, by using spin-coating						
method.							
	III. Study of dopant content and annealing conditions on optical and electrical propertie						
1	Tir. Study of dopaint content and annealing conditions on optical and electrical properties of						
	TCO thin films						
	TCO thin films						
	TCO thin films IV. Study of DC sputtering depozition conditions on ZnO:Al thin films properties						

¹ FC – fundamental course, SC – specialty course, CC – complementary course
² Co – compulsory, El – elective, F – facultative
³ C – colloquium, Ex – exam, CE – colloquium AND exam
⁴ Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

	functionalities.	
I		

VI. Minimal required references

- [1] G.I.Rusu, G.M.G.Rusu, Bazele Fizicii semiconductorilor, Ed. Tehn. și Did. CERMI, Iași, 2005
- [2] Z. Qiao, Fabrication and study of ITO thin films prepared by magnetron sputtering, disertatic, 2003
- [3] X. Li, S.E. Asher, B.M. Keyes, et al, p-type ZnO thin films grown by MOCVD, online pe http://www.osti.gov/bridge
- [4] M. Purica, F. Iacomi, C. Baban, P. Prepelita, N. Apetroaei, D. Mardare, D. Luca, "Investigation of structural properties of ITO thin films deposited on different substrates", Thin Solid Films, 515 p. 8674 8678 2007.
- [5] E. Budianu, M. Purica, F. Iacomi, C. Baban, P. Prepelita and E. Manea, "Silicon metal-semiconductor—metal photodetector with zinc oxide transparent conducting electrodes", Thin Solid Films, 516, p. 1629-1633, 2008.
- [6] N, Iftimie, F. Iacomi, N. Rezlescu, "High performance gas sensing materials based on nanostructured zinc oxide films", JOAM, 10, 7, 2008, p.1810.

VII. Didactic methods

Explaining, Demonstrating, Power Point Presentation VIII. Assessment

Pre-conditions	Attendance, active participation to lab activities, resolve homework		
Exam dates	1 st Assessment	November	
	2 nd Assessment	January	

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	written	60%
Seminar		
Laboratory	Practical work, homework.	40%