COURSE SYLLABUS

University	Alexandru Ioan Cuza University of Iași	Course title	
Faculty	Physics	VIRTUAL INSTRUMENTATION	
Department	Physics		
Domain	Physics	Course category (FC/SC/CC ¹): FC	Term (1-4): 2
Level	Postgraduate (MA)	Course type (Co/El/F ²): Co	

I. Course structure

Nı	ımber of ho	ours/we	eek	Credits	Total class hours/ semester	Total hours of individual activity	Examination type (C/Ex/CE ³)	Teaching language
Course	Seminar	Lab.	Project	6	56	124	Ex	English
2	-	2	-					

II. Instructors

	Academic	Scientific	Name and surname	Faculty position (tenure/
	degree ⁴	degree		associate - organization)
Course	Lecturer	PhD	Catalin AGHEORGHIESEI	tenure
Laboratory	Assistant	PhD	Bogdanel-Silvestru MUNTEANU	tenure
	professor			

III. Prerequisites

Electricity, electronics, programming languages

IV. Course objectives

- 1. Analogic and digital measurements principles
- 2. Data Acquisition operation basics skills3. Understanding Virtual Instrument concepts
- 4. Creating Virtual Instruments for practical works

V. Course content

Course	I. MEASUREMENT SYSTEMS			
	– analogic systems			
	– digital systems			
	II. DATA AQUISITION			
	 Data acquisition boards 			
	– Serial ports: RS-232, USB			
	– Parallel ports: IEEE-1284			
	- GPIB standard IEEE-488.2			
	III. VIRTUAL INSTRUMENTATION IN LABVIEW			
	Introduction (Front Panel, Block Diagram)			
	– Data Types, Operators			
	– Instructions			
	- Graphics			
	 Virtual Instrument projects 			
Laboratory	ry 1. Introduction in LabVIEW (front panel, diagram block)			
	2. Programming structures			
	3. Data Structures			
	4. Strings, files, nodes			
	5. Creating Virtual Instruments			
	6. Analogic Signals acquisition			
	7. Signals generation			
	8. Graphics			

 $^{^{1}}$ FC – fundamental course, SC – specialty course, CC – complementary course 2 Co – compulsory, El – elective, F – facultative 3 C – colloquium, Ex – exam, CE – colloquium AND exam 4 Professor / Associate professor / Lecturer / Assistant professor / Teaching assistant

9. Mathematical functions in LabVIEW
10. Digital Ports
11 14 Parsonal practical works

VI. Minimal required references

- 1. LabView Tutorial Manual, National InstrumentsCorp., 1996-2010 (www.ni.com).
- 2. LabVIEW. Basics Course Manual, National Instruments Corp., USA, 1998-2010
- 3. http://www.plasma.uaic.ro/ro/downloads/cat_view/59-instrumentatie-virtuala course support (in Romanian)

VII. Didactic methods

Computer based lecture, step by step programming tutorials, experiments, personal projects

VIII. Assessment

Pre-conditions	60% of lectures attendance,	60% of lectures attendance,		
	100% practical works attendance	100% practical works attendance		
	Obtaining minimal running Virtual Instrument for personal practical work			
Exam dates	1 st Assessment	April		
	2 nd Assessment	June		

	Assessment means and methods	Percentage of the final grade
Exam/Colloquium	Written Test	50%
Laboratory	Project	50%