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a b s t r a c t

In this paper we consider the complete biconservative surfaces in Euclidean space R3 and
in the unit Euclidean sphere S3. Biconservative surfaces in 3-dimensional space forms
are characterized by the fact that the gradient of their mean curvature function is an
eigenvector of the shape operator, and we are interested in studying local and global
properties of such surfaces with non-constant mean curvature function. We determine the
simply connected, complete Riemannian surfaces that admit biconservative immersions in
R3 and S3. Moreover, such immersions are explicitly described.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The study of biconservative submanifolds is derived from the theory of biharmonic submanifolds which has been of large
interest in the last decade (see, for example [1–7]).

Let (Mm, g) and (Nn, h) be two Riemannian manifolds. A critical point of the bienergy functional

E2 : C∞(M,N) → R, E2(φ) =
1
2


M

|τ(φ)|2 vg ,

where τ(φ) is the tension field of a smooth map φ : M → N , is called a biharmonic map, and it is characterized by the
vanishing of the bitension field τ2(φ) (see [8]).

A Riemannian immersion φ : Mm
→ (Nn, h) or, simply, a submanifold M of N , is called biharmonic if φ is a biharmonic

map.
In 1924, D. Hilbert called the stress–energy tensor associated to a functional E, a symmetric 2-covariant tensor S which is

conservative, i.e., div S = 0, at the critical points of E. In the case of the bienergy functional E2, G. Y. Jiang defined in 1987
the stress–bienergy tensor S2 and proved that it satisfies

div S2 = −⟨τ2(φ), dφ⟩.

Thus, if φ is biharmonic, then div S2 = 0 (see [9]).
For biharmonic submanifolds, from the above relation, we see that div S2 = 0 if and only if the tangent part of the

bitension field vanishes. A submanifoldM is called biconservative if div S2 = 0.
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The biconservative submanifolds were studied for the first time in 1995 by Th. Hasanis and Th. Vlachos (see [10]). In that
paper the biconservative hypersurfaces in the Euclidean space Rn were calledH-hypersurfaces, and they were fully classified
in R3 and R4.

Recent results in the field of biconservative submanifolds were obtained, for example, in [11–16].
When the ambient space is a 3-dimensional space form N3(c), it is easy to see that the surfaces with constant mean

curvature (CMC surfaces) are biconservative. Therefore, we are interested in biconservative surfaces which are not CMC,
i.e., grad f ≠ 0, where f is the mean curvature function.

The explicit local parametric equations of biconservative surfaces in R3, S3, and H3 were determined in [17] and [12].
When the ambient space is R3 the result in [10] was also reobtained in [17].

Our paper is organized as follows. In Section 2 we recall the results concerning the local classification of biconservative
surfaces of non-constant mean curvature function in R3 and S3, as they are presented in [17]. Then, we recall a result
about the intrinsic characterization of biconservative surfaces in 3-dimensional space form N3(c) (see [18]). More precisely,
this result provides the necessary and sufficient conditions for an abstract Riemannian surface


M2, g


to admit, locally,

a biconservative embedding with |grad f | > 0 in N3(c). It is also recalled that, if a simply connected Riemannian surface
M2, g


admits a biconservative immersion with |grad f | > 0 in N3(c), then it is unique.

In the second part of the paper, we take the next step and, writing the metric g in isothermal coordinates as g =

e2ϕ

du2

+ dv2

, we determine the equation which must be satisfied by ϕ such that


M2, g


can be locally embedded in

N3(c) as a non CMC biconservative surface. This equation is then solved for c = 0 and c = 1 (Propositions 3.3 and 3.4).
Our main goal is to extend the local classification results for biconservative surfaces in N3(c), with c = 0 and c = 1, to

global results, i.e., we ask that biconservative surfaces to be complete and with |grad f | > 0 on an open dense subset.
Our first main result is Theorem 4.1 where we determine the simply connected complete Riemannian surfaces


R2, gC


which admit a biconservative immersion in R3. Moreover, these immersions are explicitly given and they have |grad f | > 0
on an open dense subset of R2.

Next, we obtain a similar result when c = 1. In Theorem 4.18 we determine the simply connected complete Riemannian
surfaces


R2, gC,C∗


which admit a biconservative immersion in S3. We show that, up to isometries, there exists only a one-

parameter family of such Riemannian surfaces indexed by C . In order to prove Theorem 4.18, the key ingredient is that a
biconservative surface in S3 is locally isometric to a surface of revolution in R3 (Theorem 4.9) and then, by a gluing process,
we extend this surface of revolution, which is not complete, to a complete one (Theorem 4.16). The new surface admits a
biconservative immersion in S3 with |grad f | > 0 on an open dense subset. Finally, we prove the uniqueness of the complete
biconservative surfaces in S3.

2. Preliminaries

We first recall two known results concerning the completeness of a Riemannian manifold (see [19,20]).

Proposition 2.1 ([20]). Let g and g̃ be two Riemannian metrics on a manifold M. If (M, g) is complete and g̃ −g is non-negative
definite at any point of M, then (M, g̃) is also complete.

Proposition 2.2 ([19]). Let S2 be a regular surface in R3. If S2 is a closed subset of R3, then S2 is complete.

Concerning biharmonic maps, as we have already seen, the Euler–Lagrange equation for bienergy functional is given by
τ2(φ) = 0, where

τ2(φ) = −∆τ(φ) − trace RN(dφ, τ(φ))dφ

is the bitension field of φ, ∆ = − trace(∇φ)2 = − trace(∇φ
∇

φ
− ∇

φ

∇
) is the rough Laplacian defined on sections of φ−1(TN)

and RN is the curvature tensor of N given by RN(X, Y )Z = [∇X , ∇Y ]Z − ∇[X,Y ]Z .
Now we consider the stress–energy tensor S2 associated to the bienergy. This tensor, that was studied for the first time

in [9] and then in papers like [17,12,21,14,22], is given by

S2(X, Y ) =
1
2
|τ(φ)|2⟨X, Y ⟩ + ⟨dφ, ∇τ(φ)⟩⟨X, Y ⟩ − ⟨dφ(X), ∇Y τ(φ)⟩ − ⟨dφ(Y ), ∇Xτ(φ)⟩

and it satisfies

div S2 = −⟨τ2(φ), dφ⟩.

We can see that in the case when φ is a submersion, div S2 vanishes if and only if φ is biharmonic. When φ : M → N is a
Riemannian immersion, then (div S2)♯ = −τ2(φ)⊤, where ♯ denotes the musical isomorphism sharp. Therefore, in general,
for a Riemannian immersion, div S2 does not automatically vanish.

The biharmonic equation τ2(φ) = 0 of a submanifold φ : M → N can be decomposed into its normal and tangent parts,
and in the particular case of hypersurfacesM in N , one obtains the following theorem.
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Theorem 2.3 ([1,6]). If Mm is a hypersurface in a Riemannian manifold Nm+1, then M is biharmonic if and only if the tangent
and normal components of τ2(φ) vanish, i.e., respectively

2A(grad f ) + f grad f − 2f (RicciN(η))⊤ = 0

and

∆f + f |A|
2
− f RicciN(η, η) = 0,

where η is a unit normal vector field of M in N and f = trace A is the mean curvature function.

From this decomposition, it follows that a surface φ : M2
→ N3(c) in a space form N3(c) is biconservative if and only if

A(grad f ) = −
f
2
grad f .

2.1. Biconservative surfaces in R3

In the following, wewill present some results concerning biconservative surfaces with |grad f | > 0 in the 3-dimensional
Euclidean space.

Theorem 2.4 ([17]). Let S2 be a biconservative surface in R3 with f (p) > 0 and (grad f )(p) ≠ 0, at any p ∈ M. Then, locally, S2
is a surface of revolution given by

XC1(ρ, v) =

ρ cos v, ρ sin v, tC1(ρ)


,

where

tC1(ρ) =
3

2C1


ρ1/3


C1ρ2/3 − 1 +

1
√
C1

log


C1ρ
1/3

+


C1ρ2/3 − 1


,

ρ > C−3/2
1 , with C1 a positive constant.

Obviously, lim
ρ↘C−3/2

1
tC1(ρ) = 0. As t ′C1(ρ) > 0 for any ρ ∈


C−3/2
1 , ∞


, we can think ρ as a function of t and

XC1(t, v) =

ρC1(t) cos v, ρC1(t) sin v, t


, t ∈ (0, ∞).

Proposition 2.5 ([23]). If we consider the symmetry of the graph of tC1 , when ρ ∈


C−3/2
1 , ∞


with respect to the Oρ = Ox

axis, we get a smooth complete biconservative surface S̃2C1 in R3, given by

XC1(t, v) =

xC1(t) cos v, xC1(t) sin v, t


, (t, v) ∈ R,

where

xC1(t) =


ρC1(t), t > 0
C−3/2
1 , t = 0

ρC1(−t), t < 0

is a smooth function. Moreover, the curvature function f is positive and grad f is different from zero at any point of an open dense
subset of S̃2C1 .

Moreover the above construction of complete biconservative surfaces with grad f different from zero on an open dense
subset is unique.

Proposition 2.6. The complete biconservative surfaces S̃C1 are unique (up to reparameterization).

Proof. We denote by SC1 the biconservative surface defined by

XC1(ρ, v) =

ρ cos v, ρ sin v, tC1(ρ)


= ρ cos v e1 + ρ sin v e2 + tc1(ρ) e3,

where tC1(ρ) is given in Theorem 2.4. The boundary of SC1 , i.e. SC1 \ SC1 , is the circle
C−3/2
1 cos v, C−3/2

1 sin v, 0


,

which lies in the xOy plane (a plane perpendicular to the rotation axis Oz).



S. Nistor / Journal of Geometry and Physics 110 (2016) 130–153 133

At a boundary point, the tangent plane to the closure SC1 of SC1 is parallel to Oz. Moreover, along the boundary, the
mean curvature function is constant fC1 =

2
3C−3/2

1
and grad fC1 = 0. Thus, we can expect to ‘‘glue’’ along the boundary two

biconservative surfaces of type SC1 corresponding to the same C1 and symmetric each other, at the level of C∞ smoothness.
In fact, we will prove that we can glue two biconservative surfaces SC1 and SC ′

1
, at the level of C∞ smoothness, only along

the boundary. More precisely, let SC ′
1
be given by

XC ′
1
(ρ, v) = (ρ cos v + a1) f 1 + (ρ sin v + a1) f 2 +


tC ′

1
(ρ) + a3


f 3,

where

f 1, f 2, f 3


is a positively oriented orthonormal basis of R3 and a1, a2, a3 ∈ R. Assume that we can glue SC1 and SC ′

1
along a curve γ = γ (s), γ ′(s) ≠ 0, for any s, at the level of C∞ smoothness. In this case we have

γ (s) ∈ SC1 ∩ SC ′
1

ηC1(γ (s)) ∥ ηC ′
1
(γ (s))

HC1(γ (s)) = HC ′
1
(γ (s))

grad
HC1

 (γ (s)) = (grad |HC ′
1
|) (γ (s)) ,

(2.1)

for any s, where the mean curvature vector field HC1 is given by HC1 =
1
2 fC1ηC1 . For SC1 we have

ηC1(ρ, v) =
XC1,ρ × XC1,vXC1,ρ × XC1,v


= −

1
√
C1ρ1/3

cos v e1 −
1

√
C1ρ1/3

sin v e2 +


C1ρ2/3 − 1
C1ρ2/3

e3

and the mean curvature function

fC1(ρ, v) =


1 +


t ′C1(ρ)

2−3/2

t ′′C1(ρ) +

t ′C1(ρ)


1 +


t ′C1(ρ)

2
ρ


=

2
3
√
C1ρ4/3

> 0.

It follows that fC1(ρ, v) = fC1(ρ), fC1 = 2
HC1

, and
grad fC1


(ρ, v) =

1

1 +


t ′C1(ρ)

2 f ′

C1(ρ) XC1,ρ(ρ, v)

= −
8

9C3/2
1 ρ3


C1ρ

2/3
− 1


cos v e1 +


C1ρ

2/3
− 1


sin v e2+


C1ρ2/3 − 1 e3


.

Similar formulas hold for SC ′
1
. Now, let us consider

(ρ1(s), v1(s)) = X−1
C1

◦ γ (s) and (ρ2(s), v2(s)) = X−1
C ′
1

◦ γ (s).

We can rewrite (2.1) as
XC1 (ρ1(s), v1(s)) = XC ′

1
(ρ2(s), v2(s))

ηC1 (ρ1(s), v1(s)) = ηC ′
1
(ρ2(s), v2(s))

fC1 (ρ1(s), v1(s)) = fC ′
1
(ρ2(s), v2(s))

grad fC1

(ρ1(s), v1(s)) = (grad fC ′

1
) (ρ2(s), v2(s)) ,

(2.2)

for any s, where ρ1(s) ≥ C−3/2
1 and ρ2(s) ≥


C ′

1

−3/2.
First, we can observe that C1ρ

2/3
1 (s) − 1 = 0 if and only if C ′

1ρ
2/3
2 (s) − 1 = 0. Next, we consider two cases.

In the first case, when C1ρ
2/3
1 (s) − 1 = 0 for any s, by a straightforward computation, from the third relation of (2.2), we

can see that C1 = C ′

1 and ρ1(s) = ρ2(s) = C−3/2
1 , for any s. Moreover, tC1 (ρ1(s)) = 0 and tC ′

1
(ρ2(s)) = 0. Then, from the

first relation we get a1 = a2 = a3 = 0 and ⟨e1, f 3⟩ = ⟨e2, f 3⟩ = 0, i.e., e3 = ±f 3. Therefore, SC1 and SC ′
1
coincide or one of

them is the symmetric of another with respect to the affine plane where the common boundary lies.
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In the second case, we suppose that there exists s0 such that C1ρ
2/3
1 (s0) − 1 ≠ 0. It follows that also C ′

1ρ
2/3
2 (s0) − 1 ≠ 0.

Thus, we get that C1ρ
2/3
1 (s) − 1 > 0 and C ′

1ρ
2/3
2 (s) − 1 > 0 around s0. By direct computation, from (2.2), we obtain C1 = C ′

1,
a1 = a2 = a3 = 0, ρ1(s) = ρ2(s) around s0, and ⟨e3, f 3⟩ = 1, i.e., e3 = f 3. Therefore, in this case SC1 and SC ′

1
coincide.

However, we must then check that we have a smooth gluing. �

Proposition 2.7 ([23]). Any two complete biconservative surfaces differ by a homothety of R3.

Proof. First, let us consider a reparameterization of the profile curve (we consider only the upper part)

σC1(ρ) = (ρ, 0, tC1(ρ)) ≡ (ρ, tC1(ρ)), ρ > C−3/2
1 ,

by considering the change of coordinate θ = C1ρ
2/3

− 1, θ > 0. Then we get

σC1(θ) =

σ 1
C1(θ), σ 2

C1(θ)


= C−3/2
1


(θ + 1)3/2,

3
2


θ2 + θ + log(

√
θ +

√
θ + 1)


,

where θ > 0, and

XC1(θ, v) = C−3/2
1


(θ + 1)3/2 cos v, (θ + 1)3/2 sin v,

3
2


θ2 + θ + log(

√
θ +

√
θ + 1)


,

for θ > 0 and v ∈ R, i.e.,

XC1(θ, v) = C−3/2
1 X1(θ, v), θ > 0, v ∈ R.

Thus we get S̃C1 = C−3/2
1 S̃1. �

2.2. Biconservative surfaces in S3

The local classification of biconservative surfaces with | grad f | > 0 in the 3-dimensional unit Euclidean sphere is given
by the following result.

Theorem 2.8 ([17]). Let M2 be a biconservative surface in S3 with f (p) > 0 and (grad f )(p) ≠ 0 at any point p ∈ M. Then,
locally, M2

⊂ R4 can be parameterized by

ΦC1(u, v) = σ(u) +
4

3
√
C1k(u)3/4


f 1(cos v − 1) + f 2 sin v


, (2.3)

where C1 is a positive constant; f 1, f 2 ∈ R4 are two orthonormal constant vectors; σ(u) is a curve parameterized by arclength
that satisfies

⟨σ(u), f 1⟩ =
4

3
√
C1k(u)3/4

, ⟨σ(u), f 2⟩ = 0, (2.4)

and whose curvature k = k(u) is a positive non-constant solution of the following ODE

k′′k =
7
4
(k′)2 +

4
3
k2 − 4k4. (2.5)

Remark 2.9. The curve σ lies in the totally geodesic S2
= S3

∩ Π , where Π is the linear hyperspace of R4 orthogonal to f 2.

In the following, we will prove that such a curve σ exists and will find a more explicit expression for (2.3).
First, we observe that (2.5) has the prime integral

k′
2

= −
16
9

k2 − 16k4 + C1k7/2. (2.6)

Replacing (2.6) in (2.5), since k′
≠ 0, we get

k′′
= −

16
9

k − 32k3 +
7
4
C1k5/2.

In order to prove the existence of such a curve σ , wewill follow a slightly differentmethod from that in [17].We consider
f 1 = e3 and f 2 = e4, where {e1, e2, e3, e4} is the canonical basis of R4.
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From (2.4) it follows that σ can be written as

σ(u) =


x(u), y(u),

4
3
√
C1

k(u)−3/4, 0


.

Using polar coordinates, we have x(u) = R(u) cosµ(u) and y(u) = R(u) sinµ(u), with R(u) > 0.

Since σ(u) ⊂ S3, R2
= x2 + y2 and R > 0, we get k >


16
9C1

2/3
and

R =


1 −

16
9C1

k−3/2. (2.7)

As k′(u) ≠ 0, we can view u as a function of k, and considering R = R(u(k)) and µ = µ(u(k)), by a straightforward
computation, it follows that σ is explicitly given by

σ(k) =


R cosµ, R sinµ,

4
3
√
C1

k−3/4, 0


,

where R is given by (2.7) and

µ(k) = ±


k

k0

108


τ2

−16+9C1τ3/2
τ 1/2 (−16+9C1τ3/2)(9C1τ3/2−16(1+9τ2))

C1

dτ + c0,

where c0 is a real constant.
If we use the formula of σ in (2.3), we get

ΦC1(k, v) =


1 −

16
9C1

k−3/2 cosµ,


1 −

16
9C1

k−3/2 sinµ,
4 cos v

3
√
C1k3/4

,
4 sin v

3
√
C1k3/4


.

Next, we have to determine the maximum domain for ΦC1 . From (2.6), we ask that −
16
9 k2 − 16k4 + C1k7/2 > 0. Since

k > 0, it is enough to find the interval where −
16
9 − 16k2 + C1k3/2 > 0. We denote

L(k) = −
16
9

− 16k2 + C1k3/2, k > 0.

We can see that if C1 > 64
35/4

, one obtains that there exist exactly two k01 ∈


0,
 3
64C1

2
and k02 ∈

 3
64C1

2
, ∞


such that

L(k01) = L(k02) = 0 and L(k) > 0 for any k ∈ (k01, k02).

We note that k01 >


16
9C1

2/3
.

Therefore, the domain of ΦC1 is (k01, k02) × R, where k01 and k02 are the vanishing points of F , with 0 < k01 < k02.

Remark 2.10. We can choose c0 = 0 in the above expression of µ, by considering a linear orthogonal transformation of R4.

We end this section, by recalling the following result from [18], where the necessary and sufficient conditions for an
abstract Riemannian surface to admit a biconservative immersion in N3(c) were determined.

Theorem 2.11 ([18]). Let (M2, g) be a Riemannian surface and c ∈ R a real constant. Then M can be locally isometrically
embedded in a space form N3(c) as a biconservative surface with positive mean curvature having the gradient different from zero
at any point p ∈ M if and only if the Gaussian curvature K satisfies c−K(p) > 0, (grad K)(p) ≠ 0, and its level curves are circles
in M with curvature κ = (3| grad K |)/(8(c − K)).

Remark 2.12 ([18]). The level curves of K are circles with constant curvature

κ =
3| grad K |

8(c − K)

if and only if X2X1K = 0 and ∇X2X2 = −
3X1K

8(c−K)
X1, where X1 =

grad K
| grad K |

and X2 ∈ C(TM) are two vector fields on M such that
{X1(p), X2(p)} is a positively oriented orthonormal basis at any point p ∈ M .

Remark 2.13 ([18]). In the case of biconservative immersions, we have a rigidity result. Indeed, let (M2, g) be a simply
connected Riemannian surface and c ∈ R a constant. IfM admits two biconservative Riemannian immersions in N3(c) such
that their mean curvatures are positive with gradients different from zero at any point p ∈ M , then the two immersions
differ by an isometry of N3(c).
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3. Intrinsic characterization of biconservative surfaces in R3 and S3

In [18], themetric of an abstract Riemannian surface

M2, g


which admits a biconservative immersionwith |grad f | > 0

in N3(c) was not explicitly determined. We will find this metric in an explicit way.
First, we have the next proposition.

Proposition 3.1. Let (M2, g) be a Riemannian surface with Gaussian curvature K satisfying (grad K)(p) ≠ 0 and c −K(p) > 0
at any point p ∈ M, where c ∈ R is a constant. Let X1 =

grad K
| grad K |

and X2 ∈ C(TM) be two vector fields on M such that

{X1(p), X2(p)} is a positively oriented orthonormal basis at any point p ∈ M. Then X2X1K = 0 and ∇X2X2 = −
3X1K

8(c−K)
X1 if and

only if the Riemannian metric g can be locally written as g = e2ϕ(u)(du2
+ dv2), where ϕ satisfies the equation

8ce2ϕ(u)ϕ′(u) + 2ϕ′(u)ϕ′′(u) + 3ϕ′′′(u) = 0

and the conditions

K ′(u) = e−2ϕ(u)(2ϕ′(u)ϕ′′(u) − ϕ′′′(u)) ≠ 0

and

c − K(u) = c + e−2ϕ(u)ϕ′′(u) > 0,

for any u in some open interval I.

Proof. In [18] we have seen that if we have a Riemannian surface with Gaussian curvature K satisfying (grad K)(p) ≠ 0 and
c−K(p) > 0 at any point p ∈ M , where c ∈ R is a constant, X1 =

grad K
| grad K |

and X2 ∈ C(TM) are two vector fields onM such that

{X1(p), X2(p)} is a positively oriented orthonormal basis at any point p ∈ M such that X2X1K = 0 and ∇X2X2 = −
3X1K

8(c−K)
X1,

then the Riemannian metric g can be locally written as

g = e2ϕ(u)(du2
+ dv2),

where (W ; u, v) is a positive isothermal chart.
Let p0 be a fixed point in M and X = X(u, v) be a local parametrization of M in a neighborhood U ⊂ M of p0, positively

oriented.
Identifying K with K ◦ X we get the following formulas. The Gaussian curvature is given by K(u) = −e−2ϕ(u)ϕ′′(u),

(grad K)(u) = e−2ϕ(u)K ′(u)∂u and | grad K | = e−ϕ(u)
|K ′(u)|. By hypothesis, we have that c − K(u) > 0, and therefore

c + e−2ϕ(u)ϕ′′(u) > 0,

for any u.
Since grad K ≠ 0 at any point of M , we can assume that K ′(u) > 0 for any u. Then it follows that X1 = e−ϕ(u)∂u and

X2 = e−ϕ(u)∂v . It is easy to see that ∇X2X2 = −e−2ϕϕ′(u)∂u. Thus ∇X2X2 = −
3X1K

8(c−K)
X1 if and only if

−e−2ϕϕ′(u)∂u = −
3e−4ϕ(u)


2ϕ′(u)ϕ′′(u) − ϕ′′′(u)


8

c + e−2ϕ(u)ϕ′′(u)

 ∂u,

which means that

8ce2ϕ(u)ϕ′(u) + 2ϕ′(u)ϕ′′(u) + 3ϕ′′′(u) = 0. (3.1)

The converse is immediate. �

Remark 3.2. In Proposition 3.1, if we assume that K ′(u) < 0 for any u, we obtain the same ODE for ϕ to satisfy.

Applying the above result to the case c = 0 we get our next result.

Proposition 3.3. Let

M2, g


be a Riemannian surface with Gaussian curvature K satisfying (grad K)(p) ≠ 0 and K(p) < 0 at

any point p ∈ M. Let X1 =
grad K

| grad K |
and X2 ∈ C(TM) be two vector fields on M such that {X1(p), X2(p)} is a positively oriented

orthonormal basis at any point p ∈ M. Then X2X1K = 0 and ∇X2X2 =
3X1K
8K X1 if and only if the Riemannian metric g can be

locally written as

gC (u, v) = C (cosh u)6 (du2
+ dv2), u ≠ 0,

where C ∈ R is a positive constant.
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Proof. For c = 0, Eq. (3.1) becomes

3ϕ′′′(u) + 2ϕ′(u)ϕ′′(u) = 0. (3.2)

Since K = −e−2ϕ(u)ϕ′′(u) < 0, we obtain ϕ′′(u) > 0 for any u.
By a straightforward computation, we get the unique solution of (3.2)

ϕ(u) = a
 u

u′
0

1 − e−
2a
3 (τ+u0)

1 + e−
2a
3 (τ+u0)

dτ + b1, u ∈ I, (3.3)

where a, b1, u0 ∈ R, I is an open interval and u′

0 ∈ I is arbitrary fixed.
Next, we will compute the integral in (3.3), also imposing K ′(u) > 0. First, we will show that K ′(u) > 0 if and only if

u + u0 > 0.
Since

K(u) = −e−2ϕ(u)ϕ′′(u), u ∈ I, (3.4)

we have that

K ′(u) = e−2ϕ(u) 2ϕ′(u)ϕ′′(u) − ϕ′′′(u)


> 0, u ∈ I,

if and only if

2ϕ′(u)ϕ′′(u) − ϕ′′′(u) > 0, u ∈ I. (3.5)

From (3.3) we get

ϕ′′′(u) = −

8a3e−
2a
3 (u+u0)


1 − e−

2a
3 (u+u0)


9

1 + e−

2a
3 (u+u0)

3 .

If we replace the first, the second and the third derivative of ϕ in (3.5), we obtain that K ′(u) > 0 if and only if
a3

1 − e−

2a
3 (u+u0)


> 0. It is easy to check that this is equivalent to u + u0 > 0 if either a > 0 or a < 0.

Therefore, the solution is

ϕ(u) = a
 u

u′
0

1 − e−
2a
3 (τ+u0)

1 + e−
2a
3 (τ+u0)

dτ + b1, u ∈ I, u + u0 > 0,

where b1, u0 ∈ R, a ∈ R∗, I is an open interval and u′

0 ∈ I is arbitrary fixed.
Then, in order to compute the integral in (3.3), we consider some changes of variables and obtain

ϕ(u) = 3 log

cosh

u
3


+ b2, u ∈ I, u > 0,

where b2 ∈ R and I is an open interval.
If we impose K ′(u) < 0, then from (3.3), following the same steps as above, we obtain

ϕ(u) = 3 log

cosh

u
3


+ b2, u ∈ I, u < 0,

where b2 ∈ R and I is an open interval.
Since g =

1
a2
e2ϕ(u)


du2

+ dv2

, by a new change of coordinates, we come to the conclusion, i.e.,

gC = C (cosh u)6

du2

+ dv2 ,
where (W ; u, v) is a positive isothermal chart, u ≠ 0, and C ∈ R is a positive constant. �

Using Proposition 3.1 in the case when c = 1, we obtain the following result.

Proposition 3.4. Let (M2, g) be a Riemannian surface with Gaussian curvature K satisfying (grad K)(p) ≠ 0 and 1−K(p) > 0
at any point p ∈ M. Let X1 =

grad K
| grad K |

and X2 ∈ C(TM) be two vector fields on M such that {X1(p), X2(p)} is a positively oriented

orthonormal basis at any point p ∈ M. Then X2X1K = 0 and ∇X2X2 = −
3X1K

8(1−K)
X1 if and only if the Riemannian metric g can be

locally written as g = e2ϕ(u)(du2
+ dv2), where u = u(ϕ) satisfies

u = u(ϕ) = ±

 ϕ

ϕ0

dτ
b
3 e

−
2
3 τ

− e2τ + a
+ c, ϕ ∈ I,

where a, b, c ∈ R, a > 0, b < 0, and b
3 e

−
2
3 ϕ

− e2ϕ + a > 0 for every ϕ ∈ I , where I is some open interval.
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Proof. When c = 1, Eq. (3.1) becomes

3ϕ′′′(u) + 2ϕ′(u)ϕ′′(u) + 8e2ϕ(u)ϕ′(u) = 0. (3.6)

We note that (3.6) can be written as

3ϕ′′

+ (ϕ′)2 + 4e2ϕ
′

(u) = 0 and, integrating, we obtain the prime integral of (3.6)

3ϕ′′(u) +

ϕ′(u)

2
+ 4e2ϕ(u)

= a,

where a ∈ R is a constant. From this equation we have that

e−2ϕ(u)ϕ′′(u) =
1
3
ae−2ϕ(u)

−
1
3
e−2ϕ(u) ϕ′(u)

2
−

4
3
. (3.7)

Since K(u) = −e−2ϕ(u)ϕ′′(u), from (3.7), we obtain that 1 − K(u) > 0 for any u if and only if e−2ϕ(u)

a −


ϕ′(u)

2
> 1.

It is easy to see that a has to be greater than (ϕ′(u))2, so that a is a positive real number.
We note that, if ϕ′

= 0, then K = 0 and grad K = 0, which contradicts the hypotheses. Therefore, we will assume that
ϕ′

≠ 0.
As ϕ′(u) ≠ 0, we can view u as a function of ϕ and, by direct computation we get

u(ϕ) = ±

 ϕ

ϕ0

dτ
b
3 e

−
2
3 τ

− e2τ + a
+ c, ϕ ∈ I,

where a, b, c ∈ R, a > 0, b < 0, and b
3 e

−
2
3 ϕ

− e2ϕ + a > 0, for every ϕ ∈ I , where I is some open interval. �

We note that in Proposition 3.4, if K ′ > 0, then

u(ϕ) =

 ϕ

ϕ0

dτ
b
3 e

−
2
3 τ

− e2τ + a
+ c, ϕ ∈ I,

and, if K ′ < 0, then

u(ϕ) = −

 ϕ

ϕ0

dτ
b
3 e

−
2
3 τ

− e2τ + a
+ c, ϕ ∈ I.

Remark 3.5. A similar result to Proposition 3.4 can be obtained when c = −1.

4. Global properties of biconservative surfaces in R3 and S3

In the previous sectionwe determined (locally) all abstract Riemannian surfaceswhich admit biconservative immersions
with grad f ≠ 0 in R3 or S3 (and we know that such an immersion is unique). Next, we will find the explicit expressions of
complete biconservative surfaces in R3 and S3.

4.1. Biconservative surfaces in R3

In the case of complete biconservative surfaces in R3, we have the following result.

Theorem 4.1. Let

R2, gC = C (cosh u)6


du2

+ dv2


be a Riemannian surface, where C is a positive constant. Then we have:

(a) the metric on R2 is complete;
(b) KC (u, v) = KC (u) = −

3
C(cosh u)8

< 0, K ′

C (u) =
24
C

sinh u
(cosh u)9

, and therefore grad KC ≠ 0 at any point of R2
\ Ov;

(c) the immersion XC :

R2, gC


→ R3 given by

XC (u, v) =

σ 1
C (u) cos 3v, σ 1

C (u) sin 3v, σ 2
C (u)


is biconservative in R3, where

σ 1
C (u) =

C1/2

3
(cosh u)3 , σ 2

C (u) =
C1/2

2


1
2
sinh 2u + u


, u ∈ R.

Proof. In order to prove (a), we will use Proposition 2.1.
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Consider g0 = du2
+ dv2 the Euclidean metric on R2, which is complete. Then, denote by g̃ the Riemannian metric

g̃ = (cosh u)6g0, and note that g̃ − g0 =

(cosh u)6 − 1


g0 is non-negative definite at any point of R2. Therefore g̃ is also

complete and since gC = Cg̃ , it follows that

R2, gC


is complete.

To prove (b), we consider the formula (3.4), with ϕ(u) = log
√

C (cosh u)3

and obtain that the Gaussian curvature

KC (u, v) is equal to

KC (u, v) = KC (u) = −
3

C (cosh u)8

and

K ′

C (u) =
24
C

sinh u

(cosh u)9
.

Therefore, K ′

C (u) > 0 if and only if u > 0, K ′

C (u) < 0 if and only if u < 0, and K ′

C (0) = 0. Since

(grad KC ) (u, v) =
1
C
e−6 log(cosh u)K ′

C (u)∂u,

we have grad KC ≠ 0 at any point of R2
\ Ov, which is an open dense subset of R2.

We begin the proof of (c), recalling that if we have a biconservative surface of revolution in R3, with non-constant mean
curvature, its profile curve is

σ+

C1
(θ) =


σ 1
C1(θ), σ 2

C1(θ)


= C−3/2
1


(θ + 1)3/2,

3
2


θ2 + θ + log(

√
θ +

√
θ + 1)


, θ > 0,

and

X+

C1
(θ, v) = C−3/2

1


(θ + 1)3/2 cos v, (θ + 1)3/2 sin v,

3
2


θ2 + θ + log(

√
θ +

√
θ + 1)


, θ > 0, v ∈ R.

To compute the metric on this surface we first need the coefficients of the first fundamental form

E+

C1
(θ, v) =

1
C3
1

9(θ + 1)2

4θ
, F+

C1
(θ, v) = 0, G+

C1
(θ, v) =

1
C3
1
(θ + 1)3.

Thus, the Riemannian metric is

g+

C1
(θ, v) =

1
C3
1


9(θ + 1)2

4θ
dθ2

+ (θ + 1)3dv2


.

If we consider the change of coordinates (θ, v) =

(sinh u)2 , 3v


, where u ≠ 0, we obtain

g+

C1
(u, v) =

9
C3
1

(cosh u)6

du2

+ dv2 .
Since C1 is an arbitrary positive constant, we can consider C1 =

 9
C

1/3
, where C is the positive constant corresponding to

gC , and therefore g+

C1
= gC .

Now, we can find a biconservative immersion from the half plane u > 0 with the metric gC in R3. The profile curve can
now be written as

σ+

C (u) =


σ 1

9
C

1/3 (u) , σ 2
9
C

1/3 (u)



=
C1/2

3


(cosh u)3 ,

3
2

(sinh u cosh u + log (sinh u + cosh u))


=
C1/2

3


(cosh u)3 ,

3
2


1
2
sinh 2u + u


, u > 0.

Therefore, the biconservative immersion from the half plane u > 0 with the metric gC in R3 is given by

X+

C (u, v) =
C1/2

3


(cosh u)3 cos 3v, (cosh u)3 sin 3v,

3
2


1
2
sinh 2u + u


,

where u > 0 and v ∈ R.
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Fig. 1. Plot of the profile curve

σ 1
1 (u), σ 2

1 (u)

.

For the other half plane, i.e., u < 0, using the symmetry with respect to Oρ, we define the profile curve

σ−

C (u) =


σ 1

9
C

1/3 (−u) , −σ 2
9
C

1/3 (−u)



=
C1/2

3


(cosh u)3 ,

3
2


1
2
sinh 2u + u


, u < 0.

Now, it is easy to see that we have a biconservative immersion, in fact a biconservative embedding from the whole
R2, gC


in R3, given by

XC (u, v) =
C1/2

3


(cosh u)3 cos 3v, (cosh u)3 sin 3v,

3
2


1
2
sinh 2u + u


. �

Remark 4.2. For C = 1 the plot of the profile curve of X1 is given in Fig. 1.

4.2. Biconservative surfaces in S3

Finding the explicit expressions of complete biconservative surfaces in S3 is more complicated and we will need some
intermediate results.

Proposition 4.3. Let

M2, g


be a Riemannian surface with g = e2ϕ(u)(du2

+ dv2), where u = u(ϕ) satisfies

u = u(ϕ) = ±

 ϕ

ϕ0

dτ
b
3 e

−2τ/3 − e2τ + a
+ c, ϕ ∈ I,

where a, b, c ∈ R, a > 0, b < 0, and b
3 e

−2ϕ/3
− e2ϕ +a > 0 for every ϕ ∈ I , with I some open interval. Then


M2, g


is isometric

to 
DC , gC =

3
ξ 2(−ξ 8/3 + 3Cξ 2 − 3)

dξ 2
+

1
ξ 2

dθ2


,

where DC = (ξ01, ξ02) × R, C ∈


4

33/2
, ∞


is a positive constant, and ξ01 and ξ02 are the positive vanishing points of

−ξ 8/3
+ 3Cξ 2

− 3, with 0 < ξ01 < ξ02.

Proof. Since

u = u(ϕ) = ±

 ϕ

ϕ0

dτ
b
3 e

−2τ/3 − e2τ + a
+ c,
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we have that

du = ±
1

b
3 e

−e−2ϕ/3
− e2ϕ + a

dϕ,

and the expression of metric g(u, v) = e2ϕ(u)(du2
+ dv2) can be rewritten as

g(ϕ, v) =
e2ϕ

b
3 e

−e−2ϕ/3
− e2ϕ + a

dϕ2
+ e2ϕdv2.

Consider the change of coordinates (ϕ, v) =


log


(−b)3/8

ξ


, v

and we get that

g(ξ , v) =
1
ξ 2


3

−ξ 8/3 + 3a(−b)−3/4ξ 2 − 3
dξ 2

+ (−b)3/4dv2


.

Now, considering another change of coordinates (ξ , v) =

ξ, (−b)−3/8θ


and denoting C = a(−b)−3/4 > 0, we obtain

g(ξ , θ) =
1
ξ 2


3

−ξ 8/3 + 3Cξ 2 − 3
dξ 2

+ dθ2


,

for every ξ ∈ J , where J is an open interval such that −ξ 8/3
+3Cξ 2

−3 > 0, for any positive ξ ∈ J and C a positive constant.
Next, we will determine the interval J . If we denote

T (ξ) = −ξ 8/3
+ 3Cξ 2

− 3, ξ > 0,

by straightforward computation, we get that T (ξ) > 0 for any ξ ∈ (ξ01, ξ02), where T (ξ01) = T (ξ02) = 0,

ξ01 ∈


0,

9
4
C
3/2


and ξ02 ∈


9
4
C
3/2

, ∞



are the only positive vanishing points of T and C ∈


4

33/2
, ∞


.

Therefore,

M2, g


is isometric to


DC , gC =

3
ξ2(−ξ8/3+3Cξ2−3)

dξ 2
+

1
ξ2
dθ2


, where DC = (ξ01, ξ02) × R, C ∈


4

33/2
, ∞


,

and ξ01 and ξ02 are the vanishing points of −ξ 8/3
+ 3Cξ 2

− 3, with 0 < ξ01 < ξ02. �

The Riemannian surface (DC , gC ) has the following properties.

Theorem 4.4. Consider (DC , gC ). Then, we have

(a) 1 − KC (ξ , θ) =
1
9ξ

8/3 > 0, K ′

C (ξ) = −
8
27ξ

5/3 and grad KC ≠ 0 at any point of DC ;
(b) the immersion ΦC : (DC , gC ) → S3 given by

ΦC (ξ , θ) =


1 −

1
Cξ 2

cos ζ ,


1 −

1
Cξ 2

sin ζ ,
cos(

√
Cθ)

√
Cξ

,
sin(

√
Cθ)

√
Cξ


,

is biconservative in S3, where

ζ (ξ) = ±

 ξ

ξ00

√
Cτ 4/3

(−1 + Cτ 2)
√

−τ 8/3 + 3Cτ 2 − 3
dτ + c,

and c is a real constant.

Proof. Consider the Riemannian metric

gC =
3

ξ 2(−ξ 8/3 + 3Cξ 2 − 3)
dξ 2

+
1
ξ 2

dθ2

on DC with coefficients given by

EC = gC,11 =
3

ξ 2(−ξ 8/3 + 3Cξ 2 − 3)
, FC = gC,12 = 0, GC = gC,22 =

1
ξ 2

. (4.1)

Using the formula of the Gaussian curvature

K(ξ , θ) = −
1

2
√
EG


∂

∂ξ


Gξ

√
EG


+

∂

∂θ


Eθ

√
EG


,
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we obtain that KC is given by

KC (ξ , θ) = KC (ξ) = −
1
9
ξ 8/3

+ 1

and

K ′

C (ξ) = −
8
27

ξ 5/3.

Therefore, K ′

C (ξ) < 0 at any ξ ∈ (ξ01, ξ02). Since

(grad KC )(ξ , θ) =
ξ 2(−ξ 8/3

+ 3Cξ 2
− 3)

3
K ′

C (ξ)∂ξ ,

we have that |(grad KC )(ξ , θ)| ≠ 0 for any (ξ , θ) ∈ DC .
To prove (b), let us first recall that, if M2 is a biconservative surface in S3, with f > 0 and grad f ≠ 0 at any point of M ,

thenM can be locally parameterized by

ΦC1(k, v) =


1 −

16
9C1

k−3/2 cosµ,


1 −

16
9C1

k−3/2 sinµ,
4 cos v

3
√
C1k3/4

,
4 sin v

3
√
C1k3/4


,

for any (k, v) ∈ (k01, k02) × R, where k01 and k02 are the vanishing points of −
16
9 k2 − 16k4 + C1k7/2, k01 ∈


0,
 3
64C1

2
,

k02 ∈

 3
64C1

2
, ∞


, C1 > 64

35/4
, and

µ(k) = ±

 k

k0

108


τ2

−16+9C1τ3/2
τ 1/2 (−16+9C1τ3/2)(9C1τ3/2−16(1+9τ2))

C1

dτ + c0,

where c0 is a real constant.
In order to compute the metric on this surface, we need the coefficients of the first fundamental form

EC1(k, v) =
81C1k3/2 − 144

k2

9C1k3/2 − 16

 
9C1k3/2 − 16


1 + 9k2

 ,
FC1(k, v) = 0, GC1(k, v) =

16
9C1k3/2

.

Thus, the Riemannian metric is given by

gC1(k, v) =
81C1k3/2 − 144

k2

9C1k3/2 − 16

 
9C1k3/2 − 16


1 + 9k2

dk2 +
16

9C1k3/2
dv2.

We write C1 as C1 = 16 · 31/4C , where C ∈ R∗
+
, and we know that C1 > 64

35/4
, which implies C > 4

33/2
. Therefore, we can

choose C to be the positive constant for the metric (DC , gC ).
We note that we can consider the change of coordinates

(k, v) =


3−3/2ξ 4/3,

√
C1

4 · 31/8
θ


,

where ξ and θ are the coordinates on the domain DC . We have indeed

−ξ 8/3
+ 3Cξ 2

− 3 =
27
16k2


−

16
9

k2 − 16k4 + C1k7/2


and, therefore, the vanishing points ξ01 and ξ02 of −ξ 8/3
+ 3Cξ 2

− 3 are the corresponding points to k01 and k02, i.e., ξ01 =

39/8k3/401 and ξ02 = 39/8k3/402 .
Thus, we get the expression of the initial metric

gC (ξ , θ) =
3

ξ 2

−ξ 8/3 + 3Cξ 2 − 3

dξ 2
+

1
ξ 2

dθ2, (ξ , θ) ∈ DC .

The local parametrization of the surface can be rewritten as

ΦC (ξ , θ) =


1 −

1
Cξ 2

cos ζ ,


1 −

1
Cξ 2

sin ζ ,
cos(

√
Cθ)

√
Cξ

,
sin(

√
Cθ)

√
Cξ


,
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for any ξ ∈ (ξ01, ξ02) and θ ∈ R, where ζ = µ(k(ξ)) is given by

ζ (ξ) = ±

 ξ

ξ00

√
Cτ 4/3

−1 + Cτ 2
√

−τ 8/3 + 3Cτ 2 − 3
dτ + c,

where c ∈ R. �

Remark 4.5. The Gaussian curvature of (DC , gC ) does not depend on C .

Remark 4.6. Since (grad KC ) (ξ , θ) = −
8ξ11/3(−ξ8/3+3Cξ2−3)

81 ∂ξ for any (ξ , θ) ∈ DC , we get that

lim
ξ↘ξ01

(grad KC ) (ξ , θ) = lim
ξ↗ξ02

(grad KC ) (ξ , θ) = 0.

Now, we denote

ζ0(ξ) =

 ξ

ξ00

√
Cτ 4/3

(−1 + Cτ 2)
√

−τ 8/3 + 3Cτ 2 − 3
dτ .

Next, we state the following lemma, that we will use later in our paper. Its proof follows using standard arguments.

Lemma 4.7. We have

lim
ξ↘ξ01

ζ0(ξ) = ζ0,−1 > −∞ and lim
ξ↗ξ02

ζ0(ξ) = ζ0,1 < ∞.

The next result shows that we do have a one-parameter family of Riemannian surfaces (DC , gC ).

Proposition 4.8. Let us consider

DC , gC =

3
ξ2(−ξ8/3+3Cξ2−3)

dξ 2
+

1
ξ2
dθ2


and


DC̃ , gC̃ =

3
ξ̃2(−ξ̃8/3+3C̃ ξ̃2−3)

dξ̃ 2
+

1
ξ̃2
dθ̃2


.

The surfaces (DC , gC ) and

DC̃ , gC̃


are isometric if and only if C = C̃ and the isometry is Θ(ξ , θ) = (ξ , ±θ + a1), where

a1 is a real constant.

Proof. Assume that there exists an isometry Θ : (DC , gC ) →

DC̃ , gC̃


and denote Θ(ξ , θ) =


Θ1(ξ , θ), Θ2(ξ , θ)


. As

we have seen in Theorem 4.4, the Gaussian curvature of (DC , gC ) is K(ξ , θ) = −
1
9ξ

8/3
+ 1 and the Gaussian curvature of

DC̃ , gC̃

is K̃(ξ̃ , θ̃ ) = −

1
9 ξ̃

8/3
+ 1.

Since Θ is an isometry, we have that K̃(Θ(ξ , θ)) = K(ξ , θ) and, taking into account the above expressions of the
curvatures, we get Θ1(ξ , θ) = ξ > 0. Therefore, Θ(ξ , θ) =


ξ, Θ2(ξ , θ)


.

Next, from

Θ∗gC̃

 
∂ξ , ∂ξ


= gC


∂ξ , ∂ξ


, i.e., gC̃


Θ∗∂ξ , Θ∗∂ξ


= gC


∂ξ , ∂ξ


, using (4.1), we find

3
−ξ 8/3 + 3Cξ 2 − 3

=
3

−ξ 8/3 + 3C̃ξ 2 − 3
+


∂Θ2

∂ξ

2

. (4.2)

Similarly, from

Θ∗gC̃

 
∂ξ , ∂θ


= gC


∂ξ , ∂θ


and


Θ∗gC̃


(∂θ , ∂θ ) = gC (∂θ , ∂θ ), using (4.1), we get

0 =
∂Θ2

∂ξ
·
∂Θ2

∂θ
and

∂Θ2

∂θ
= ±1. (4.3)

From (4.3) one obtains ∂Θ2

∂ξ
= 0. Now, using (4.2), it follows that C = C̃ . Since ∂Θ2

∂ξ
= 0 and ∂Θ2

∂θ
= ±1, we have

Θ(ξ , θ) = (ξ , ±θ + a1), where a1 is a real constant. �

The Riemannian surface (DC , gC ) is not complete. In order to find a complete biconservative surface in S3, we will first
construct a complete surface of revolution in R3. We begin with the following result.

Theorem 4.9. Let us consider (DC , gC ), where DC = (ξ01, ξ02) × R and C ∈


4

33/2
, ∞


. Then (DC , gC ) is the universal cover of

the surface of revolution in R3 given by

ΨC,C∗(ξ , θ) =


f (ξ) cos

θ

C∗
, f (ξ) sin

θ

C∗
, h(ξ)


, (4.4)
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where f (ξ) =
C∗

ξ
,

h(ξ) = ±

 ξ

ξ00


3τ 2 − (C∗)2


−τ 8/3 + 3Cτ 2 − 3


τ 4

−τ 8/3 + 3Cτ 2 − 3

 dτ + a, (4.5)

C∗
∈


0,

C −

4
33/2

−1/2


is a positive constant, a is a real constant and ξ00 is an arbitrary point in (ξ01, ξ02).

Proof. In fact, we can prove that if (DC , gC ) is (locally and intrinsically) isometric to a surface of revolution, then it has to be
of the form (4.4). To show this, let us consider

Ψ̃


ξ̃ , θ̃


=


f̃

ξ̃

cos θ̃ , f̃


ξ̃

sin θ̃ , h̃


ξ̃


,

ξ̃ , θ̃


∈ D̃,

a surface of revolution, where D̃ is an open set in R2 and Θ : (DC , gC ) →


D̃, g̃


an isometry, where

g̃

ξ̃ , θ̃


=


f̃ ′


ξ̃
2

+


h̃′


ξ̃
2

dξ̃ 2
+


f̃

ξ̃
2

dθ̃2.

We will assume that f̃

ξ̃


> 0 for any ξ̃ .

Next, we will proceed in the sameway as in the proof of Proposition 4.8. From K̃(Θ(ξ , θ)) = K(ξ , θ), we getΘ1(ξ , θ) =

Θ1(ξ). In order to simplify the notations, we write Θ1
= ξ̃ and Θ2

= θ̃ , so that ξ̃ (ξ , θ) = ξ̃ (ξ ). As Θ∗g̃ = gC , we get
∂θ̃

∂θ

2 
f

ξ̃ (ξ )

2
=

1
ξ 2

(4.6)

and

∂θ̃

∂θ

∂θ̃

∂ξ


f

ξ̃ (ξ )

2
= 0. (4.7)

From (4.6), we get that ∂θ̃
∂θ

≠ 0, and then, from (4.7), it follows that ∂θ̃
∂ξ

= 0. Thus we have θ̃ (ξ , θ) = θ̃ (θ). Again from (4.6),

one obtains


∂θ̃
∂θ

2
=

1
ξ2(f (ξ̃ (ξ )))

2 . Since the left hand term depends only on θ and the right hand term depends only on ξ , it

follows that

f̃

ξ̃ (ξ )


=

C∗

ξ
, (4.8)

where C∗
∈ R∗

+
, and

θ̃ (θ) =
θ

C∗
+ a0,

where a0 ∈ R. In the following, we shall consider a0 = 0.
Hence, we obtain

f̃ ◦ ξ̃
′

(ξ)

2

+


h̃ ◦ ξ̃

′

(ξ)

2

=
3

ξ 2

−ξ 8/3 + 3Cξ 2 − 3


and, from (4.8), one has

h̃ ◦ ξ̃
′

(ξ)

2

=
3ξ 2

− (C∗)2

−ξ 8/3

+ 3Cξ 2
− 3


ξ 2

−ξ 8/3 + 3Cξ 2 − 3

 . (4.9)

Next, we have to find the conditions to be satisfied by the positive constant C∗, such that 3ξ 2
−(C∗)2


−ξ 8/3

+ 3Cξ 2
− 3


> 0 for any ξ ∈ (ξ01, ξ02), where C > 4

33/2
is fixed. By standard arguments, it can be shown that if C∗

∈


0,

C −

4
33/2

−1/2

,

then the above inequality holds and
h̃ ◦ ξ̃


(ξ) = ±

 ξ

ξ00


3τ 2 − (C∗)2


−τ 8/3 + 3Cτ 2 − 3


τ 4

−τ 8/3 + 3Cτ 2 − 3

 dτ + a,

for any ξ ∈ (ξ01, ξ02), where a is a real constant.
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Next, we consider ΨC,C∗ = Ψ̃ ◦ Θ defined by

ΨC,C∗(ξ , θ) =


f̃ ◦ ξ̃


(ξ) cos


θ̃ (θ)


,

f̃ ◦ ξ̃


(ξ) sin


θ̃ (θ)


,

h̃ ◦ ξ̃


(ξ)


=


f (ξ) cos

θ

C∗
, f (ξ) sin

θ

C∗
, h′(ξ)


, (ξ , θ) ∈ DC ,

where C > 4
33/2

is a positive constant, C∗
∈


0,


33/2
33/2C−4


, f (ξ) =

C∗

ξ
and

h(ξ) = ±

 ξ

ξ00


3τ 2 − (C∗)2


−τ 8/3 + 3Cτ 2 − 3


τ 4

−τ 8/3 + 3Cτ 2 − 3

 dτ + a,

for any ξ ∈ (ξ01, ξ02), with a a real constant. �

Remark 4.10. The mean curvature function of ΨC,C∗ is given by

fC,C∗ =
9ξ 2

− (C∗)2

−2ξ 8/3

+ 9Cξ 2
− 18


6C∗


9ξ 2 − 3 (C∗)2


−ξ 8/3 + 3Cξ 2 − 3


and we can see that it depends on both C and C∗.

Remark 4.11. From now on, we will take ξ00 =
 9
4C
3/2

∈ (ξ01, ξ02) and C∗
∈


0,

C −

4
33/2

−1/2

.

The function h has the following properties which follow easily.

Lemma 4.12. Let

h0(ξ) =

 ξ

ξ00


3τ 2 − (C∗)2


−τ 8/3 + 3Cτ 2 − 3


τ 4

−τ 8/3 + 3Cτ 2 − 3

 dτ , ξ ∈ (ξ01, ξ02) ,

i.e., we fix the sign in (4.5) and we choose a = a0 = 0. Then
(a) limξ↘ξ01 h0(ξ) = h0,−1 > −∞ and limξ↗ξ02 h0(ξ) = h0,1 < ∞;
(b) h0 is strictly increasing and

lim
ξ↘ξ01

h′

0(ξ) = lim
ξ↗ξ02

h′

0(ξ) = ∞;

(c) limξ↘ξ01 h
′′

0(ξ) = −∞ and limξ↗ξ02 h
′′

0(ξ) = ∞.

We have shown that (DC , gC ) is isometric to the surface of revolution given by ΨC,C∗ and this surface is not complete.
Alternating the sign in (4.5) and with appropriate choices of the constant a, we will construct a complete surface, which on
an open dense subset is locally isometric to (DC , gC ).

First, let us consider the profile curve σ0(ξ) = (f (ξ), h0(ξ)), for any ξ ∈ (ξ01, ξ02). Obviously, h0 : (ξ01, ξ02) →
h0,−1, h0,1


is a diffeomorphism and we can consider h−1

0 :

h0,−1, h0,1


→ (ξ01, ξ02), with h−1

0 : ξ0 = ξ0(h),
h ∈


h0,−1, h0,1


.

In order to extend our surface in the upper part, we ask the line h = h0,1 to be a symmetry axis. Therefore 2h0,1 =

h0(ξ) + h1(ξ), where h1 : (ξ01, ξ02) → R, and then we get h1(ξ) = 2h0,1 − h0(ξ); thus, a = a1 = 2h0,1. It is easy to see that
lim

ξ↘ξ01
h1(ξ) = 2h0,1 − h0,−1, lim

ξ↗ξ02
h1(ξ) = h0,1,

and, since h′

1(ξ) = −h′

0(ξ) < 0, for any ξ ∈ (ξ01, ξ02), it follows that h1 is strictly decreasing and h1 (ξ01, ξ02) =
h0,1, 2h0,1 − h0,−1


. Since h1 is a diffeomorphism on its image, we can consider h−1

1 :

h0,1, 2h0,1 − h0,−1


→ (ξ01, ξ02),

with h−1
1 : ξ1 = ξ1(h), h ∈


h0,1, 2h0,1 − h0,−1


.

It is easy to see that
lim

h↗h0,1
ξ1(h) = ξ02, lim

h↘2h0,1−h0,−1
ξ1(h) = ξ01,

and, since

h−1
1

′
(h) =

1
h′
1(ξ1(h))

< 0, for any h ∈ (h0,1, 2h0,1 − h0,−1), it follows that h−1
1 is strictly decreasing.

Next, we define a function F1 :

h0,−1, 2h0,1 − h0,−1


→ R by

F1(h) =

ξ1(h), h ∈

h0,1, 2h0,1 − h0,−1


ξ02, h = h0,1
ξ0(h), h ∈


h0,−1, h0,1


,

and we will prove that F1 is at least of class C3.
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Obviously, F1 is continuous.
In order to prove that F1 is of class C1, we first consider h ∈


h0,−1, h0,1


. In this case, we have

F ′

1(h) = ξ ′

0(h) =
1

h′

0(ξ0(h))

and

lim
h↗h0,1

F ′

1(h) = lim
h↗h0,1

ξ ′

0(h) = lim
h↗h0,1

1
h′

0(ξ0(h))
= lim

ξ↗ξ02

1
h′

0(ξ)
= 0.

Then, we consider h ∈

h0,1, 2h0,1 − h0,−1


, and we get

F ′

1(h) = ξ ′

1(h) =
1

h′

1(ξ1(h))

and

lim
h↘h0,1

F ′

1(h) = lim
h↘h0,1

ξ ′

1(h) = lim
h↘h0,1

1
h′

1(ξ1(h))
= lim

ξ↗ξ02

1
h′

1(ξ)
= lim

ξ↗ξ02

1
−h′

0(ξ)
= 0.

Therefore, limh↗h0,1 F
′

1(h) = limh↘h0,1 F
′

1(h) = 0 ∈ R, which means that there exists F ′

1(h0,1) = 0 and F1 is of class C1.
In a similar way, one can prove that F1 is of class C2 and C3.
In order to extend our surface in the lower part, we ask the line h = h0,−1 to be a symmetry axis. Therefore, 2h0,−1 =

h0(ξ) + h−1(ξ), where h−1 : (ξ01, ξ02) → R, and we get h−1(ξ) = 2h0,−1 − h0(ξ); thus, a = a−1 = 2h0,−1. It is easy to see
that

lim
ξ↗ξ02

h−1(ξ) = 2h0,−1 − h0,1, lim
ξ↘ξ01

h−1(ξ) = h0,−1,

and, since h′

−1(ξ) = −h′

0(ξ) < 0, for any ξ ∈ (ξ01, ξ02), it follows that h−1 is strictly decreasing and h−1 (ξ01, ξ02) =
2h0,−1 − h0,1, h0,−1


. Since h−1 is a diffeomorphism on its image, we can consider h−1

−1 :

2h0,−1 − h0,1, h0,−1


→ (ξ01, ξ02),

with h−1
−1 : ξ−1 = ξ−1(h), h ∈


2h0,−1 − h0,1, h0,−1


.

It is easy to see that

lim
h↗2h0,−1−h0,1

ξ−1(h) = ξ02, lim
h↘h0,−1

ξ−1(h) = ξ01,

and, since

h−1

−1

′
(h) =

1
h′
−1(ξ−1(h))

< 0, for any h ∈ (2h0,−1 − h0,1, h0,−1), we get that h−1
−1 is strictly decreasing.

Further, we define the function F−1 :

2h0,−1 − h0,1, h0,1


→ R by

F−1(h) =

ξ0(h), h ∈

h0,−1, h0,1


ξ01, h = h0,−1
ξ−1(h), h ∈


2h0,−1 − h0,1, h0,−1


,

and, in a similar way to the proof of C3 smoothness of F1, we can show that also F−1 is at least of class C3.
Now, we extend the functions F1 and F−1 to the whole line R. This construction will be done by symmetry to the lines

h = h0,k, k ∈ Z∗.
We define h0,2 = 2h0,1 − h0,−1, h0,3 = 2h0,2 − h0,1 = 3h0,1 − 2h0,−1, etc.; then h0,−2 = 2h0,−1 − h0,1, h0,−3 =

2h0,−2 − h0,−1 = 3h0,−1 − 2h0,1, etc. This way we obtain

h0,k =


k h0,1 − (k − 1)h0,−1, k ≥ 1
−k h0,−1 + (k + 1)h0,1, k ≤ −1.

The functions hk are obtained in the same way. For example, h1(ξ) = 2h0,1 − h0(ξ), h2(ξ) = 2h0,2 − h1(ξ) = 2h0,1 −

2h0,−1 + h0(ξ), etc.; then h−1(ξ) = 2h0,−1 − h0(ξ), h−2(ξ) = 2h0,−2 − h−1(ξ) = 2h0,−1 − 2h0,1 + h0(ξ), etc. In general, we
have

hk(ξ) =


2h0,k − hk−1(ξ), k ≥ 1
2h0,k − hk+1(ξ), k ≤ −1.

We note that for hk we have the following formulas

hk(ξ) =


k

h0,1 − h0,−1


+ h0(ξ), k = 2p, p ∈ Z

(k + 1)h0,1 − (k − 1)h0,−1 − h0(ξ), k = 2p + 1, p ∈ Z.
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Fig. 2. Plot of h0 .

Denoting the inverse of the function hk by ξk, we define the function

F(h) =



ξ01, h = h0,k, k = 2p, p ≥ 1
ξ02, h = h0,k, k = 2p + 1, p ≥ 0
ξk(h), h ∈


h0,k, h0,k+1


, k ≥ 1

ξ02, h = h0,1
ξ0(h), h ∈


h0,−1, h0,1


ξ01, h = h0,−1
ξk(h), h ∈


h0,k−1, h0,k


, k ≤ −1

ξ01, h = h0,k, k = 2p − 1, p ≤ 0
ξ02, h = h0,k, k = 2p, p ≤ −1,

which is at least of class C3.

Remark 4.13. When C = C∗
= 1, a = 0 and ξ00 =

 9
4

3/2
, the plots of

h0(ξ) =

 ξ

ξ00


3τ 2 −


−τ 8/3 + 3Cτ 2 − 3


τ 4

−τ 8/3 + 3Cτ 2 − 3

 dτ ,

h1(ξ) = 2h0,1 − h0(ξ), h−1(ξ) = 2h0,−1 − h0(ξ), and of corresponding profile curves σ0(ξ) =


1
ξ
, h0(ξ)


, σ1(ξ) =

1
ξ
, h1(ξ)


, and σ−1(ξ) =


1
ξ
, h−1(ξ)


, for ξ ∈ (ξ01, ξ02), are as in Figs. 2–5.

Remark 4.14. The function F is periodic with main period 2

h0,1 − h0,−1


.

Remark 4.15. The function F depends on C and C∗.

We define σk(ξ) = (f (ξ), hk(ξ)), ξ ∈ (ξ01, ξ02), where k ∈ Z. From Theorem 4.9, we know that (DC , gC ) is isometric to
the surface of revolution given by

ΨC,C∗(ξ , θ) =


f (ξ) cos

θ

C∗
, f (ξ) sin

θ

C∗
, hk(ξ)


, (ξ , θ) ∈ DC .

We can reparameterize σk and one obtains

σk(h) =

σ (ξk(h)) = ((f ◦ ξk)(h), h) = ((f ◦ F)(h), h) , h ∈

h0,k, h0,k+1


, k ≥ 1

σ (ξ0(h)) = ((f ◦ ξ0)(h), h) = ((f ◦ F)(h), h) , h ∈

h0,−1, h0,1


, k = 0

σ (ξk(h)) = ((f ◦ ξk)(h), h) = ((f ◦ F)(h), h) , h ∈

h0,k−1, h0,k


, k ≤ −1.

Now, let us consider the profile curve

σ(h) = ((f ◦ F)(h), h) , h ∈ R.

Of course, σ is the graph of the periodic function f ◦ F , and it is at least of class C3. We can state the following theorem.
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Fig. 3. Plot of h0 , h1 and h−1 .

Fig. 4. Plot of σ0 .

Fig. 5. Plot of σ0 , σ1 and σ−1 .



S. Nistor / Journal of Geometry and Physics 110 (2016) 130–153 149

Theorem 4.16. The surface of revolution given by

ΨC,C∗(h, θ) =


(f ◦ F)(h) cos

θ

C∗
, (f ◦ F)(h) sin

θ

C∗
, h


, (h, θ) ∈ R2,

is complete and, on an open dense subset, it is locally isometric to (DC , gC ). The induced metric is given by

gC,C∗(h, θ) =
3F 2(h)

3F 2(h) − (C∗)2 (−F 8/3(h) + 3CF 2(h) − 3)
dh2

+
1

F 2(h)
dθ2,

(h, θ) ∈ R2. Moreover, grad K ≠ 0 at any point of that open dense subset, and 1 − K > 0 everywhere.

From Theorem 4.16 we easily get the following result.

Proposition 4.17. The universal cover of the surface of revolution given by ΨC,C∗ is R2 endowed with the metric gC,C∗ . It is
complete, 1−K > 0 on R2 and, on an open dense subset, it is locally isometric to (DC , gC ) and grad K ≠ 0 at any point. Moreover
any two


R2, gC,C∗

1


and


R2, gC,C∗

2


are isometric.

Proof. We only have to prove the last statement. We construct the isometry between


R2, gC,C∗
1


and


R2, gC,C∗

2


in

a natural way, in the sense that, for example, it maps the interval

h0,−1, h0,1


corresponding to C∗

1 onto the interval
h0,−1, h0,1


corresponding to C∗

2 . Repeating this process, we obtain an (at least) C3 diffeomorphism of R2. It is easy to see
that such diffeomorphism is a global isometry. �

From Theorem 4.4 and Lemma 4.7, we have that ΦC : (DC , gC ) → S3,

ΦC (ξ , θ) =


1 −

1
Cξ 2

cos ζ ,


1 −

1
Cξ 2

sin ζ ,
cos(

√
Cθ)

√
Cξ

,
sin(

√
Cθ)

√
Cξ


,

with ζ (ξ) = ± (ζ0(ξ) + c), is a biconservative immersion in S3 and

lim
ξ↘ξ01

ζ0(ξ) = ζ0,−1 > −∞, lim
ξ↗ξ02

ζ0(ξ) = ζ0,1 < ∞.

In the last part of our paper we will construct a biconservative immersion from

R2, gC,C∗


in S3, as we claimed at the

beginning of this section.
In order to do this, starting with the first component of the parametrization, we consider the following continuous

functions defined on [ξ01, ξ02]:

Φ1
k (ξ) =




1 −

1
Cξ 2

cos (ζ0(ξ) + ck) , ξ ∈ (ξ01, ξ02)
1 −

1
Cξ 2

01
cos


ζ0,−1 + ck


, ξ = ξ01

1 −
1

Cξ 2
02

cos

ζ0,1 + ck


, ξ = ξ02,

where ck ∈ R for any k ∈ Z.
Next, consider the function Φ1

: R → R defined by

Φ1(h) =



Φ1

k ◦ F

(h), h ∈


h0,k, h0,k+1


, k ≥ 1

Φ1
0 ◦ F


(h), h ∈


h0,−1, h0,1


Φ1

k ◦ F

(h), h ∈


h0,k−1, h0,k


, k ≤ −1.

(4.10)

We will prove that Φ1 is of class C3. Since F is a periodic function, with main period 2

h0,1 − h0,−1


, it is enough to ask Φ1

to be a C3 function on the interval

h0,−2, h0,2


=

2h0,−1 − h0,1, 2h0,1 − h0,−1


. This means that it is enough to study the

behavior of F at h0,−1 and h0,1.
First, we ask Φ1 to be continuous at h0,−1 and h0,1, i.e.,

lim
h↗h0,1

Φ1(h) = lim
h↘h0,1

Φ1(h) ∈ R, lim
h↘h0,−1

Φ1(h) = lim
h↗h0,−1

Φ1(h) ∈ R.
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Since

lim
h↗h0,1

Φ1(h) = lim
h↗h0,1

Φ1
0 (F(h)) = lim

h↗h0,1
Φ1

0 (ξ0(h))

= lim
ξ↗ξ02

Φ1
0 (ξ) =


1 −

1
Cξ 2

02
cos


ζ0,1 + c0


∈ R

and

lim
h↘h0,1

Φ1(h) = lim
h↘h0,1

Φ1
1 (F(h)) = lim

h↘h0,1
Φ1

1 (ξ1(h))

= lim
ξ↗ξ02

Φ1
1 (ξ) =


1 −

1
Cξ 2

02
cos


ζ0,1 + c1


∈ R,

we get that cos

ζ0,1 + c0


= cos


ζ0,1 + c1


. Therefore, we have two cases, as c1 = c0 + 2s1π or c1 = −2ζ0,1 − c0 + 2s1π ,

where s1 ∈ Z, i.e.,

c1 ≡ c0 (mod 2π) or c1 ≡

−2ζ0,1 − c0


(mod 2π) .

In a similar way, for h0,−1, we have

lim
h↘h0,−1

Φ1(h) = lim
h↘h0,−1

Φ1
0 (F(h)) = lim

h↘h0,−1
Φ1

0 (ξ0(h))

= lim
ξ↘ξ01

Φ1
0 (ξ) =


1 −

1
Cξ 2

01
cos


ζ0,−1 + c0


∈ R

and

lim
h↗h0,−1

Φ1(h) = lim
h↗h0,−1

Φ1
1 (F(h)) = lim

h↗h0,−1
Φ1

1 (ξ−1(h))

= lim
ξ↗ξ01

Φ1
1 (ξ) =


1 −

1
Cξ 2

01
cos


ζ0,−1 + c−1


∈ R.

Hence, we must have cos

ζ0,−1 + c0


= cos


ζ0,−1 + c−1


. Therefore we again have two cases as c−1 = c0 + 2s−1π or

c−1 = −2ζ0,−1 − c0 + 2s−1π , where s−1 ∈ Z, i.e., c−1 ≡ c0 (mod 2π) or c−1 ≡

−2ζ0,−1 − c0


(mod 2π).

By some straightforward computation, we can see that Φ1 is of class C1 on the interval

h0,−2, h0,2


if and only if

sin

ζ0,1 + c0


= − sin


ζ0,1 + c1


and sin


ζ0,−1 + c0


= − sin


ζ0,−1 + c−1


.

We recall that, from the continuity of Φ1, there are two possibilities for each c1 and c−1 and we can then choose

c1 ≡

−2ζ0,1 − c0


(mod 2π) and c−1 ≡


−2ζ0,−1 − c0


(mod 2π) .

With this choice, one obtains that Φ1 is of class C3 on

h0,−2, h0,2


.

In general, if we ask Φ1 to be of class C3 on R, since F is periodic, it can be shown that we have the following relations
between two consecutive ck, where k ∈ Z:

ck ≡



−2ζ0,1 − ck−1


(mod 2π) , k = 2p + 1, p ∈ N

−2ζ0,−1 − ck−1


(mod 2π) , k = 2p, p ∈ N
−2ζ0,−1 − ck+1


(mod 2π) , k = 2p − 1, p ∈ Z−

−2ζ0,1 − ck+1


(mod 2π) , k = 2p, p ∈ Z−,

(4.11)

or, equivalently,

ck ≡


−2ζ0,1 − ck−1


(mod 2π) , k = 2p + 1, p ∈ Z

−2ζ0,−1 − ck−1


(mod 2π) , k = 2p, p ∈ Z.

We note that for ck, we also have the following formulas

ck ≡


k

ζ0,1 − ζ0,−1


+ c0


(mod 2π) , k = 2p, p ∈ Z

(k − 1)ζ0,−1 − (k + 1)ζ0,1 − c0


(mod 2π) , k = 2p + 1, p ∈ Z.
(4.12)
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To study the second component of the parametrizationΦC , wewill work in a similar way as for the first one.We consider
the following continuous functions defined on [ξ01, ξ02]:

Φ2
k (ξ) =



(−1)k

1 −

1
Cξ 2

sin (ζ0(ξ) + ck) , ξ ∈ (ξ01, ξ02)

(−1)k

1 −

1
Cξ 2

01
sin

ζ0,−1 + ck


, ξ = ξ01

(−1)k

1 −

1
Cξ 2

02
sin

ζ0,1 + ck


, ξ = ξ02,

where ck ∈ R, for any k ∈ Z, are given by (4.11).
Then, we consider the function Φ2

: R → R defined by

Φ2(h) =



Φ2

k ◦ F

(h), h ∈


h0,k, h0,k+1


, k ≥ 1

Φ2
0 ◦ F


(h), h ∈


h0,−1, h0,1


Φ2

k ◦ F

(h), h ∈


h0,k−1, h0,k


, k ≤ −1.

(4.13)

It can be shown that, with these choices of the constants ck, Φ2 is of class C3. The proof is similar to the proof of C3

smoothness of Φ1.
For the third component of the parametrization ΦC , we consider the following function

Φ3
0 (ξ) =

1
√
Cξ

, ξ ∈ [ξ01, ξ02] ,

It is obvious that Φ3
0 is a smooth function on [ξ01, ξ02].

Let us consider a new function Φ3
: R → R defined by

Φ3(h) = (Φ3
0 ◦ F)(h), h ∈ R. (4.14)

Since F is at least of class C3 on R and Φ3
0 is smooth on [ξ01, ξ02], it follows that Φ3 is at least of class C3 on R.

For the fourth component of the parametrization ΦC , we define Φ4 as Φ3, i.e.,

Φ4(h) = (Φ4
0 ◦ F)(h), h ∈ R, (4.15)

where Φ4
0 (ξ) =

1
√
Cξ

, for any ξ ∈ [ξ01, ξ02].
Now, we can conclude with the following theorem.

Theorem 4.18. The map ΦC,C∗ :

R2, gC,C∗


→ S3, defined by

ΦC,C∗(h, θ) = ΦC (F(h), θ) =


Φ1(h), Φ2(h), Φ3(h) cos(

√
Cθ), Φ4(h) sin(

√
Cθ)


,

(h, θ) ∈ R2, where Φ1, Φ2, Φ3 and Φ4 are given by (4.10), (4.13), (4.14) and (4.15), respectively, and the constants ck are given
by (4.12), is a biconservative immersion.

Proof. Obviously, for h ∈

h0,k, h0,k+1


, when k ≥ 1, or h ∈


h0,−1, h0,1


, or h ∈


h0,k−1, h0,k


, when k ≤ −1, ΦC,C∗

is a Riemannian immersion and it is biconservative. As ΦC,C∗ is a map of class C3 and the biconservative equation is a
third-degree equation, by continuity, we get that ΦC,C∗ is biconservative on R2. �

Remark 4.19. For C = C∗
= 1 and c0 = 0 we obtain the following plot of


π ◦ Φ1,1


(h, θ), when h ∈


h0,−11, h0,11


;

π : R4
→ R2 denotes the projection that associates to a vector of R4 its first two components (see Fig. 6).

Remark 4.20. We note that ΦC,C∗ has self-intersections (along circles).

Proposition 4.21. The complete biconservative surfaces given by Theorem 4.18 are unique (up to reparameterization).

Proof. We first denote by SC,ck the surface defined byΦC : (DC , gC ) → S3. Of course, SC,ck and SC,cl are extrinsically isometric.
The boundary of SC,ck is given by the curves:1 −

1
Cξ 2

01
cos


ζ0,−1 + ck


, (−1)k


1 −

1
Cξ 2

01
sin

ζ0,−1 + ck


,
cos

√
Cθ


√
Cξ01

,
sin
√

Cθ


√
Cξ01


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Fig. 6. Plot of

π ◦ Φ1,1


(h, θ), when h ∈


h0,−11, h0,11


.

and 1 −
1

Cξ 2
02

cos

ζ0,1 + ck


, (−1)k


1 −

1
Cξ 2

02
sin

ζ0,1 + ck


,
cos

√
Cθ


√
Cξ02

,
sin
√

Cθ


√
Cξ02

 .

These curves are two circles in the affine planes
1 −

1
Cξ 2

01
cos


ζ0,−1 + ck


, (−1)k


1 −

1
Cξ 2

01
sin

ζ0,−1 + ck


, 0, 0


+ span {e3, e4}

and 
1 −

1
Cξ 2

02
cos


ζ0,1 + ck


, (−1)k


1 −

1
Cξ 2

02
sin

ζ0,1 + ck


, 0, 0


+ span {e3, e4} ,

respectively. The radii of these two circles are 1
√
Cξ01

and 1
√
Cξ02

, respectively.
If we want to glue two surfaces SC,ck and SC ′,cl then, we must do it only along the boundary, and the proof of this result is

similar to the proof of Proposition 2.6. This implies that the two affine planes, where the boundaries lie, coincide and C = C ′.
Thus, along the boundary, we can glue surfaces only of type SC,ck and SC,cl .

If we consider, for example, SC,c0 and SC,c1 and glue them along the boundary1 −
1

Cξ 2
02

cos

ζ0,1 + c0


,


1 −

1
Cξ 2

02
sin

ζ0,1 + c0


,
cos

√
Cθ


√
Cξ02

,
sin
√

Cθ


√
Cξ02


for SC,c0 and1 −

1
Cξ 2

02
cos


ζ0,1 + c1


, −


1 −

1
Cξ 2

02
sin

ζ0,1 + c1


,
cos

√
Cθ


√
Cξ02

,
sin
√

Cθ


√
Cξ02


for SC,c1 , we get c1 ≡


−2ζ0,1 − c0


(mod 2π), as we have already seen. Then, at a boundary point, using the coordinates

(h, θ)we get that the tangent plane to the closure SC,c0 of SC,c0 is spanned by a vector tangent to the boundary and the vector−
ξ
4/3
02

3

Cξ 2

02 − 1
 sin ζ0,1 + c0


,

ξ
4/3
02

3

Cξ 2

02 − 1
 cos ζ0,1 + c0


, 0, 0


and, at the same boundary point, the tangent plane to SC,c1 is spanned by a vector tangent to the boundary and the vector ξ

4/3
02

3

Cξ 2

02 − 1
 sin ζ0,1 + c1


,

ξ
4/3
02

3

Cξ 2

02 − 1
 cos ζ0,1 + c1


, 0, 0

 .



S. Nistor / Journal of Geometry and Physics 110 (2016) 130–153 153

As c1 ≡

−2ζ0,1 − c0


(mod 2π), the two tangent planes coincide.

However, we must then check that we have a C3 smooth gluing. �

We end this paper with an open problem.
Open problem. Is there a biconservative immersion Φ :


M2, g


→ S3, where M is compact, 1 − K > 0 on M and grad f

does not vanish at any point of an open dense subset ofM?
Since F is periodic,


R2, gC,C∗


can be quotient to a torus, but we do not know if ΦC,C∗ is periodic. Some numerical

experiments suggest that ΦC,C∗ would not be periodic.

Conventions

We denote an abstract Riemannian surface, or an abstract Riemannian manifold by (M, g). To avoid any confusions, in
the case of surfaces, we denote S2 the image in the ambient space of an abstract Riemannian surface


M2, g


through the

immersion φ.
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