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1. Introduction

The study of biconservative submanifolds is derived from the theory of biharmonic submanifolds which has been of large
interest in the last decade (see, for example [1-7]).
Let (M™, g) and (N", h) be two Riemannian manifolds. A critical point of the bienergy functional

1
E; : C*(M,N) — R, Ez(¢7)=5/ lz(®)I v,
M

where 7(¢) is the tension field of a smooth map ¢ : M — N, is called a biharmonic map, and it is characterized by the
vanishing of the bitension field t,(¢) (see [8]).

A Riemannian immersion ¢ : M™ — (N", h) or, simply, a submanifold M of N, is called biharmonic if ¢ is a biharmonic
map.

In 1924, D. Hilbert called the stress-energy tensor associated to a functional E, a symmetric 2-covariant tensor S which is
conservative, i.e., divS = 0, at the critical points of E. In the case of the bienergy functional E;, G. Y. Jiang defined in 1987
the stress-bienergy tensor S, and proved that it satisfies

divS, = —(1a(¢), dop).

Thus, if ¢ is biharmonic, then divS; = 0 (see [9]).
For biharmonic submanifolds, from the above relation, we see that divS, = 0 if and only if the tangent part of the
bitension field vanishes. A submanifold M is called biconservative if divS, = 0.
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The biconservative submanifolds were studied for the first time in 1995 by Th. Hasanis and Th. Vlachos (see [10]). In that
paper the biconservative hypersurfaces in the Euclidean space R" were called H-hypersurfaces, and they were fully classified
in R3 and R*.

Recent results in the field of biconservative submanifolds were obtained, for example, in [11-16].

When the ambient space is a 3-dimensional space form N3(c), it is easy to see that the surfaces with constant mean
curvature (CMC surfaces) are biconservative. Therefore, we are interested in biconservative surfaces which are not CMC,
i.e,, gradf # 0, where f is the mean curvature function.

The explicit local parametric equations of biconservative surfaces in R, S, and H> were determined in [17] and [12].
When the ambient space is R> the result in [10] was also reobtained in [17].

Our paper is organized as follows. In Section 2 we recall the results concerning the local classification of biconservative
surfaces of non-constant mean curvature function in R3 and S, as they are presented in [17]. Then, we recall a result
about the intrinsic characterization of biconservative surfaces in 3-dimensional space form N3(c) (see [18]). More precisely,
this result provides the necessary and sufficient conditions for an abstract Riemannian surface (Mz, g) to admit, locally,
a biconservative embedding with |grad f| > 0 in N3(c). It is also recalled that, if a simply connected Riemannian surface
(M2, g) admits a biconservative immersion with |grad f| > 0in N3(c), then it is unique.

In the second part of the paper, we take the next step and, writing the metric g in isothermal coordinates as g =
* (du? + dv?), we determine the equation which must be satisfied by ¢ such that (M?, g) can be locally embedded in
N3(c) as a non CMC biconservative surface. This equation is then solved for c = 0 and ¢ = 1 (Propositions 3.3 and 3.4).

Our main goal is to extend the local classification results for biconservative surfaces in N3(c), withc = 0Oand ¢ = 1, to
global results, i.e., we ask that biconservative surfaces to be complete and with |grad f| > 0 on an open dense subset.

Our first main result is Theorem 4.1 where we determine the simply connected complete Riemannian surfaces (Rz, gc)
which admit a biconservative immersion in R3. Moreover, these immersions are explicitly given and they have |grad f| > 0
on an open dense subset of R?.

Next, we obtain a similar result when ¢ = 1.In Theorem 4.18 we determine the simply connected complete Riemannian
surfaces (Rz, gc,c*) which admit a biconservative immersion in S>. We show that, up to isometries, there exists only a one-
parameter family of such Riemannian surfaces indexed by C. In order to prove Theorem 4.18, the key ingredient is that a
biconservative surface in S? is locally isometric to a surface of revolution in R3 (Theorem 4.9) and then, by a gluing process,
we extend this surface of revolution, which is not complete, to a complete one (Theorem 4.16). The new surface admits a
biconservative immersion in S with |grad f| > 0 on an open dense subset. Finally, we prove the uniqueness of the complete
biconservative surfaces in S>.

2. Preliminaries
We first recall two known results concerning the completeness of a Riemannian manifold (see [19,20]).

Proposition 2.1 ([20]). Let g and g be two Riemannian metrics on a manifold M. If (M, g) is complete and g — g is non-negative
definite at any point of M, then (M, g) is also complete.

Proposition 2.2 ([19]). Let S? be a regular surface in R3. If S? is a closed subset of R3, then §? is complete.

Concerning biharmonic maps, as we have already seen, the Euler-Lagrange equation for bienergy functional is given by
7(¢p) = 0, where

02(¢) = —At(¢) — trace R" (do, T(¢))d¢p

is the bitension field of ¢, A = — trace(V?)? = — trace(V?V? — V) is the rough Laplacian defined on sections of ¢~ (TN)
and R" is the curvature tensor of N given by RV (X, Y)Z = [Vx, Vy1Z — Vx.y)Z.

Now we consider the stress—energy tensor S, associated to the bienergy. This tensor, that was studied for the first time
in [9] and then in papers like [17,12,21,14,22], is given by

1
5X,Y) = 5|T(¢)|2(X, Y) +(dp, VT (@) (X, Y) — (dp(X), VyT(9)) — (dpp(Y), VxT())
and it satisfies

divS, = —(r2(¢9), do).

We can see that in the case when ¢ is a submersion, div S, vanishes if and only if ¢ is biharmonic. When ¢ : M — N isa
Riemannian immersion, then (divS,)* = —1;3(¢) T, where # denotes the musical isomorphism sharp. Therefore, in general,
for a Riemannian immersion, div S, does not automatically vanish.

The biharmonic equation 7;(¢) = 0 of a submanifold ¢ : M — N can be decomposed into its normal and tangent parts,
and in the particular case of hypersurfaces M in N, one obtains the following theorem.
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Theorem 2.3 ([1,6]). If M™ is a hypersurface in a Riemannian manifold N™*1, then M is biharmonic if and only if the tangent
and normal components of t,(¢) vanish, i.e., respectively

2A(gradf) + f grad f — 2f (Ricci¥ ()T =0
and
Af +fIA? — f Ricci (9, ) = 0,
where n is a unit normal vector field of M in N and f = trace A is the mean curvature function.

From this decomposition, it follows that a surface ¢ : M?> — N3(c) in a space form N3(c) is biconservative if and only if

A(gradf) = —g gradf.

2.1. Biconservative surfaces in R3

In the following, we will present some results concerning biconservative surfaces with |grad f| > 0 in the 3-dimensional
Euclidean space.

Theorem 2.4 ([17]). Let S? be a biconservative surface in R with f (p) > 0 and (gradf)(p) # 0, at any p € M. Then, locally, 5>
is a surface of revolution given by

Xe,(p,v) = (pcosv, psinv, te, (p))
where

3/, 1
te,(0) = 5 (0GP =T+ ——1og (VCip'* + VCip?P 1)),
o (p) 2C, <p 10 +ﬁ g(vGp " +vCp

o> C1_3/2, with Cy a positive constant.

Obviously, limp\cfa/z te,(p) = 0.As tél (p) > Oforany p € (Cl—3/2’ oo>, we can think p as a function of t and
1

Xe,(t,v) = (pc, (t) cos v, pc, () sinv, t),  t € (0,00).

Proposition 2.5 ([23]). If we consider the symmetry of the graph of tc,, when p € (Cl_ 3 2, oo) with respect to the Op = Ox

axis, we get a smooth complete biconservative surface §g1 in R3, given by

X, (t,v) = (xc, (£) cos v, X¢, (1) sin v, t) (t,v) € R,
where
Pcy (t)a t>0
=14 ¢ t=o0

pe(=t), t<0

is a smooth function. Moreover, the curvature function f is positive and grad f is different from zero at any point of an open dense
subset of SZ..

Moreover the above construction of complete biconservative surfaces with grad f different from zero on an open dense
subset is unique.

Proposition 2.6. The complete biconservative surfaces ‘§C1 are unique (up to reparameterization).

Proof. We denote by S, the biconservative surface defined by

Xc,(p,v) = (pcosv, psinv, tc, (p))
= pcosv ey + psinve; +t, (p) e,

where t¢, (p) is given in Theorem 2.4. The boundary of S¢,, i.e. §C1 \ S, is the circle
(Cﬁ/2 cos v, Cf3/2 sinv, O) ,

which lies in the xOy plane (a plane perpendicular to the rotation axis 0z).
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At a boundary point, the tangent plane to the closure §C1 of Sc, is parallel to Oz. Moreover, along the boundary, the
mean curvature function is constant f, = BC_%/Z and grad fc, = 0. Thus, we can expect to “glue” along the boundary two
1
biconservative surfaces of type S¢, corresponding to the same C; and symmetric each other, at the level of C* smoothness.
In fact, we will prove that we can glue two biconservative surfaces S¢, and Sc;» at the level of C* smoothness, only along
the boundary. More precisely, let Sq be given by

Xer (p,v) = (pcosv+a) fy + (psinv+an) f, + (tq (p) + as)fg,

where {f,f,,f3} is a positively oriented orthonormal basis of R* and a, a5, a3 € R. Assume that we can glue S, and Sc;
along a curve y = y(s), y'(s) # 0, for any s, at the level of C> smoothness. In this case we have

y(s) € S¢; NS¢

e (Y (8)) I ne; (v (s))

He, (v (8)) = He; (v (5))

(grad [He,|) (7 (5)) = (grad [H¢; ) (¥ (5))

2.1)

for any s, where the mean curvature vector field Hc, is given by He, = % fc, ne, . For Sc; we have

XC],p X XC],U
|XC1,p X XC],U|

1 _ 1 Japn—1_
_—WCOSUE]_WSIHUEZ—{‘ W@

and the mean curvature function
2
n tt, (p) (1 + () )
1o

fatov) = (14 (& @)) |0+

ne, (p,v) =

2
——— > 0.
3 /C1p4/3

It follows that fc, (p, v) = fe, (p)., fe, = 2 |He, |, and

(gradfC1) (107 U) 2 .f(,‘1 (p) XC1,,O(pa U)

1+ (tél(p))

8 _ L _
Rl=Tpe ((C1p*% = 1) cosv ey + (C1p*% — 1) sinv e+ /C1p%3 — 163) .
1 P

Similar formulas hold for Sc;. Now, let us consider

(p1(8), v1(s)) = X' o y(s) and (pa(s), v2(s)) =xgj 0 y(s).

1

We can rewrite (2.1) as

Xe; (0105), v1(5)) = Xc; (02(5), v2(5))

ney (P1(8), v1(8)) = 1cy (02(8), v2(5))

fe (01(9), v1(5)) = fe; (02(5), v2(5))

(gradfe,) (01(5), v1(5)) = (gradfe)) (p2(s), v2(5))

(2.2)

for any s, where p;(s) > C; >/> and p,(s) > (Cl’)_m.

First, we can observe that C1,of/3(s) — 1= 0ifand only if C} ,022/3(5) — 1 = 0. Next, we consider two cases.

In the first case, when C; ,012/ 3 (s) — 1 = 0O for any s, by a straightforward computation, from the third relation of (2.2), we
can see that C; = Cj and p1(s) = p2(s) = C1_3/2- for any s. Moreover, t¢, (01(s)) = 0 and ter (02(s)) = 0. Then, from the
first relation we get a; = a, = a3 = 0 and (e, f3) = (€2, f3) = 0, i.e, €3 = =£f;. Therefore, S¢, and Sc; coincide or one of
them is the symmetric of another with respect to the affine plane where the common boundary lies.



134 S. Nistor / Journal of Geometry and Physics 110 (2016) 130-153

In the second case, we suppose that there exists sy such that C1pf/3 (s0) — 1 # 0.1t follows that also C; p§/3 (so) —1#0.

Thus, we get that Clpfﬁ(s) —1>0and( ,022/3 (s) — 1 > O around so. By direct computation, from (2.2), we obtain C; = Cj,

ay =a; = a3 = 0, p(s) = py(s) around sy, and (€3, f3) = 1,i.e., &3 = f5. Therefore, in this case Sc, and Sq coincide.
However, we must then check that we have a smooth gluing. O
Proposition 2.7 ([23]). Any two complete biconservative surfaces differ by a homothety of R>.
Proof. First, let us consider a reparameterization of the profile curve (we consider only the upper part)
-3/2

e (IO) = (105 0, tC] (IO)) = (pv tC] (10))! P> C] s

by considering the change of coordinate § = C;p%> — 1,0 > 0. Then we get
_ 3
o0, 0) = (ol 0). 0 ) = ¢, ((9 + 12, 2 [V + 0 +log(VE + Vo + 1)]) :
where 8 > 0, and

_ 3
Xe,; 0, v) = C; % (0 + 1)*?cos v, (6 + 1)*?sinv, 5 [\/92 + 6 + log(v/6 + /0 + 1)]) ,

for6 > 0andv € R, i.e,
Xe, (0, v) =C; X0, v), 6 >0,veER.

Thus we get S¢, = C;>°5,. O

2.2. Biconservative surfaces in S

The local classification of biconservative surfaces with | grad f| > 0 in the 3-dimensional unit Euclidean sphere is given
by the following result.

Theorem 2.8 ([17]). Let M? be a biconservative surface in S* with f (p) > 0 and (gradf)(p) # 0 at any point p € M. Then,
locally, M? C R* can be parameterized by

¢, (u,v) = o (u) + (F1(cosv — 1) + f, sinv), (2.3)

4
3/Crk(u)3/4

where C; is a positive constant; f, f, € R* are two orthonormal constant vectors; o (u) is a curve parameterized by arclength
that satisfies

4

(o), fq) = W’ (o), f,) =0, (2.4)

and whose curvature k = k(u) is a positive non-constant solution of the following ODE

7 4
K'k = Z(k’)2 + §k2 — 4k*, (2.5)

Remark 2.9. The curve o lies in the totally geodesic S> = S3 N IT, where I7 is the linear hyperspace of R* orthogonal to f,.

In the following, we will prove that such a curve o exists and will find a more explicit expression for (2.3).
First, we observe that (2.5) has the prime integral

16
(K)? = _Ek2 —16K* + K72 (2.6)

Replacing (2.6) in (2.5), since k’ # 0, we get
16 7
K' = ——k— 32k + =G, k2.
9 T30

_Inorder to prove the existence of such a curve o, we will follow a slightly different method from that in [17]. We consider
f1 =esandf, = e4, where {€y, &,, €3, &4} is the canonical basis of R*.
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From (2.4) it follows that o can be written as

4 —3/4 o) :
’ 3 r—Cl ’
Using polar coordinates, we have x(u) = R(u) cos p(u) and y(u) = R(u) sin p(u), with R(u) > 0.

2/3
Since o (u) C S*,R*> =x*> +y* andR > 0, we get k > (%) and

ou) = <X(u), y(u

16
R = 1-— Ek_a/z. (27)
1

As k'(u) # 0, we can view u as a function of k, and considering R = R(u(k)) and u = u(u(k)), by a straightforward
computation, it follows that o is explicitly given by

o(k) = (Rcosu Rsin 4 k=374 0)
, eV 01,

where R is given by (2.7) and

(k) = / \/ \/%

T + Co,

172 (£16+9C173/2) (9C; 3/2— 16(1+9r2))
G

where g is a real constant.
If we use the formula of ¢ in (2.3), we get

D¢, (k,v) = 1-— k‘3/2 cosp, [1— —k—3/2 sin i dcosv 4sin v
a NN A

Next, we have to determine the maximum domain for @c,. From (2.6), we ask that —12k* — 16k* + C{k’/? > 0. Since
k > 0, it is enough to find the interval where —% — 16k? + C;k3/2 > 0. We denote

16
L(k) = e 16k% + C1k*2, k> 0.

We can see that if C; > 5/4, one obtains that there exist exactly two ko; € (0, (%Q)z) and kg € ((G%Q)z , oo) such that
L(km) = L(koz) = 0and L(k) > 0 for any k e (ko], koz).
2/3

We note that kg; > (%

Therefore, the domain of @¢, is (ko1, ko2) % R, where ko1 and ko, are the vanishing points of F, with 0 < ko1 < ko.

Remark 2.10. We can choose ¢, = 0 in the above expression of 4, by considering a linear orthogonal transformation of R*.

We end this section, by recalling the following result from [18], where the necessary and sufficient conditions for an
abstract Riemannian surface to admit a biconservative immersion in N3(c) were determined.

Theorem 2.11 ([18]). Let (M?, g) be a Riemannian surface and ¢ € R a real constant. Then M can be locally isometrically
embedded in a space form N3(c) as a biconservative surface with positive mean curvature having the gradient different from zero
at any point p € M if and only if the Gaussian curvature K satisfies c — K(p) > 0, (grad K)(p) # 0, and its level curves are circles
in M with curvature k = (3| gradK|)/(8(c — K)).

Remark 2.12 ([18]). The level curves of K are circles with constant curvature

_ 3| grad K|
T 8(c—K)
if and only if X,X1K = 0 and Vy, X, = S?f”f()X], where X; = li‘éﬂ'f{‘ and X, € C(TM) are two vector fields on M such that

{X1(p), X2(p)} is a positively oriented orthonormal basis at any point p € M.

Remark 2.13 ([18]). In the case of biconservative immersions, we have a rigidity result. Indeed, let (M?, g) be a simply
connected Riemannian surface and ¢ € R a constant. If M admits two biconservative Riemannian immersions in N*(c) such
that their mean curvatures are positive with gradients different from zero at any point p € M, then the two immersions
differ by an isometry of N3(c).
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3. Intrinsic characterization of biconservative surfaces in R? and S3

In [18], the metric of an abstract Riemannian surface (M 2, g) which admits a biconservative immersion with |grad f| > 0
in N3(c) was not explicitly determined. We will find this metric in an explicit way.
First, we have the next proposition.

Proposition 3.1. Let (M2, g) be a Riemannian surface with Gaussian curvature K satisfying (grad K)(p) # 0and c —K(p) > 0

at any point p € M, where ¢ € R is a constant. Let X; = érri‘;'lil and X, € C(TM) be two vector fields on M such that

{X1(p), X2(p)} is a positively oriented orthonormal basis at any point p € M. Then X,X;K = 0 and Vx,X; = — 8‘2(1’1(()& if and

only if the Riemannian metric g can be locally written as g = e**™ (du? 4 dv?), where ¢ satisfies the equation

8ce®* ™o’ (u) + 2¢ (u)g” (u) + 39" (u) = 0

and the conditions

K'(u) = e 2" 2¢' (u)¢" (u) — ¢ () # 0
and

c—K@w) =c+e2Wy"(u) > 0,
for any u in some open interval I.

Proof. In[18] we have seen that if we have a Riemannian surface with Gaussian curvature K satisfying (grad K) (p) # 0 and

c—K(p) > Oatany pointp € M, where c € Risaconstant,X; = |§1:‘;I;| and X, € C(TM) are two vector fields on M such that
{X1(p), X2(p)} is a positively oriented orthonormal basis at any point p € M such that X;X;K = 0 and Vyx,X; = — S?fl'f()xl,

then the Riemannian metric g can be locally written as
g = e*Y(du’ + dv?),

where (W; u, v) is a positive isothermal chart.

Let po be a fixed point in M and X = X (u, v) be a local parametrization of M in a neighborhood U C M of py, positively
oriented.

Identifying K with K o X we get the following formulas. The Gaussian curvature is given by K (u) = —e 2¢®¢" (u),
(grad K)(u) = e 2*®K’(u)d, and | grad K| = e~*@W|K’(u)]|. By hypothesis, we have that c — K (u) > 0, and therefore

c+e 22y () > 0,

for any u.
Since grad K # 0 at any point of M, we can assume that K’(u) > 0 for any u. Then it follows that X; = e~#®3, and

X, = e~#®y,. It is easy to see that Vx,X, = —e~2¢/ (u)dy. Thus Vx, X, = —%X] if and only if
ey ()3, = _36’74‘”(”) (2<p/(u)<p”(u) - <PW(U)) 3
! 8 (c+ e Wy (u)) v
which means that
8ce®* ™’ (u) + 2¢' W)e" (1) + 3¢ (u) = 0. (3.1)

The converse is immediate. O

Remark 3.2. In Proposition 3.1, if we assume that K’ (1) < 0 for any u, we obtain the same ODE for ¢ to satisfy.

Applying the above result to the case c = 0 we get our next result.

Proposition 3.3. Let (MZ, g) be a Riemannian surface with Gaussian curvature K satisfying (grad K)(p) # 0 and K(p) < 0 at

any point p € M. Let X; = é‘;ﬂ’;‘ and X, € C(TM) be two vector fields on M such that {X;(p), X(p)} is a positively oriented
3X1K

orthonormal basis at any point p € M. Then X,X,K = 0 and Vx, X, = ==X if and only if the Riemannian metric g can be
locally written as

gc(u, v) = C (coshu)® (du? +dv?), u#0,

where C € R is a positive constant.
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Proof. For c = 0, Eq. (3.1) becomes
39" (u) + 2¢'(w¢" (u) = 0. (3.2)

Since K = —e~2*W¢y” (1) < 0, we obtain ¢” (u) > 0 for any u.
By a straightforward computation, we get the unique solution of (3.2)

uq_e (t+up)
o) = a/ —————dt + by, uel, (3.3)
“6 14+ e—?(r—b—uO)

where a, by, up € R, I is an open interval and ug € I is arbitrary fixed.

Next, we will compute the integral in (3.3), also imposing K’(u) > 0. First, we will show that K’(u) > 0 if and only if
u+ug > 0.

Since

K = —e 20y "), uel, (3.4)
we have that

K’(u) — 20 (ZQD,(U)(/J”(U) _ (/)W(U)) >0, uel,
if and only if

2¢0'(we" () — " (W) >0, uel (3.5)
From (3.3) we get

8a ef%(quuo) (1 _ 6727“(u+u0))

9 (1 +e—23*”<”+”0>)3

If we replace the first, the second and the third derivative of ¢ in (3.5), we obtain that K'(u) > 0 if and only if

¢ (u) = -

2 . .. . S
@ (1—e 3@t 5 0 1tis easy to check that this is equivalent to u 4+ uy > 0 if eithera > Qora < 0.
Therefore, the solution is

uq_e (t+ug)
(p(u):a/ #df‘i‘bl, uEI,ll—l—u0>0,
”E) -1+ ef?(‘fﬁ*uo)

where by, g € R, a € R*, [ is an open interval and u;, € I is arbitrary fixed.
Then, in order to compute the integral in (3.3), we consider some changes of variables and obtain

w(u):310g<c05h2>+b2, uel,u>0,

where b, € R and I is an open interval.
If we impose K’(u) < 0, then from (3.3), following the same steps as above, we obtain

u
go(u):3log(coshf)+b2, uel,u<?o,

where b, € R andI is an open interval.
Sinceg = 120 (du + dv ) by a new change of coordinates, we come to the conclusion, i.e.,
gc = C (coshu)® (du® + dv?),
where (W; u, v) is a positive isothermal chart, u 7 0, and C € R is a positive constant. [
Using Proposition 3.1 in the case when ¢ = 1, we obtain the following result.

Proposition 3.4. Let (M2, g) be a Riemannian surface with Gaussian curvature K satisfying (grad K)(p) # 0and 1—K(p) > 0

at any point p € M. Let X; = ‘ggrri‘:”q and X, € C(TM) be two vector fields on M such that {X;(p), X2(p)} is a positively oriented
3XK

orthonormal basis at any point p € M. Then X,X1K = 0 and Vx, X, = — 500
locally written as g = e**® (du? + dvz), where u = u(y) satisfies

Xy if and only if the Riemannian metric g can be

u=u(p) = / +c, pel,
(2]

2.
bem5T —e2 4

2 . .
wherea,b,c e R,a > 0,b < 0, and %e‘é"’ —e? +a > 0forevery ¢ € I, wherel is some open interval.
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Proof. When ¢ = 1, Eq. (3.1) becomes
39" (u) 4 2¢' (u)@” (u) + 8e* ¢’ (u) = 0. (3.6)
We note that (3.6) can be written as (3¢” + (¢')? + 4e2“’)/ (u) = 0 and, integrating, we obtain the prime integral of (3.6)

3(p//(u) + ((p/(ll))z +462<ﬂ(u) =a,

where a € R is a constant. From this equation we have that

,2<p(u) //(u) a672<ﬂ(u) ;(_37290(11) (<p/(u))2 _ g (37)

Since K (u) = —e~2*®W¢” (u), from (3.7), we obtain that 1 — K (u) > 0 for any u if and only if e=2¢® (a - ((p’(u))z) > 1

It is easy to see that a has to be greater than (¢’(1))?, so that a is a positive real number.

We note that, if ¢’ = 0, then K = 0 and grad K = 0, which contradicts the hypotheses. Therefore, we will assume that
9" #0.

As ¢’ (u) # 0, we can view u as a function of ¢ and, by direct computation we get

u(p) = / +c, pel,
%0

2
bem5T —e24a

wherea, b,c € R,a > 0,b < 0, and 2 3€ 50 _ e 4+ a > 0, for every ¢ € I, where I is some open interval. O

We note that in Proposition 3.4,if K’ > 0, then

u(p) = / +c, pel,
©o b

2

2e7 37 2T
3 —et+a

and, if K’ < 0, then

u(p) = / +c, el
%0

2
g 3T —e2" 4 q

Remark 3.5. A similar result to Proposition 3.4 can be obtained when ¢ = —1.

4. Global properties of biconservative surfaces in R* and S3

In the previous section we determined (locally) all abstract Riemannian surfaces which admit biconservative immersions
with grad f # 0in R? or S? (and we know that such an immersion is unique). Next, we will find the explicit expressions of
complete biconservative surfaces in R and S>.

4.1. Biconservative surfaces in R3
In the case of complete biconservative surfaces in R?, we have the following result.

Theorem 4.1. Let (Rz, gc = C (coshu)® (du2 + dvz)) be a Riemannian surface, where C is a positive constant. Then we have:

(a) the metric on R? is complete; }
(b) Ke(u, v) = Kc(u) = —C(cofw < 0,K.(u) = 22 S0U - and therefore grad Kc # O at any point of R? \ Ov;

C (coshu)?”’

(c) the immersion X¢ : (Rz,gc) — R3 given by
Xc(u, v) = (o (u) cos 3v, o (u) sin 3v, ¢ (1))

is biconservative in R3, where

cl/2 cl2 /1
ag(u) = = (coshu)?, ocz(u) = 5 (5 sinh 2u + u) , ueR.

Proof. In order to prove (a), we will use Proposition 2.1.
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Consider gg = du® + dv? the Euclidean metric on R?, which is complete. Then, denote by g the Riemannian metric
g = (coshu)®go, and note that § — gy = ((cosh u)® — l) go is non-negative definite at any point of R?. Therefore g is also

complete and since g- = Cg, it follows that (Rz, gc) is complete.
To prove (b), we consider the formula (3.4), with ¢ (u) = log (ﬁ (cosh u)3) and obtain that the Gaussian curvature
Kc(u, v) is equal to

3
Ke(u,v) =Kc(u) = ————
c(u, v) = Kc(u) C (coshi)®
and
, 24 sinhu
K@) = ———>.
C (coshu)

Therefore, K/ (u) > 0if and only ifu > 0, K/(u) < 0ifand only ifu < 0, and K/(0) = 0. Since
1
(grad Ke) (u, v) = e *PHOIK (W),
we have grad K # 0 at any point of R? \ Ov, which is an open dense subset of R2.

We begin the proof of (c), recalling that if we have a biconservative surface of revolution in R?, with non-constant mean
curvature, its profile curve is

0l () = (0l 0), 02 ®))
=" ((9 +1)%2, ; [\/M+ log(v/60 + W}D . 0>0,
and
X, v) = ¢ ((9 + 1)*2cosv, (6 + 1) sinv, % [Jm+ log(v/0 + Jmﬂ) ., 0>0,vER.

To compute the metric on this surface we first need the coefficients of the first fundamental form

1 9(6 + 1) 1
+ — _ + _ + _ 3
Ec1 @,v) = C13 20 , FC1 @,v) =0, GC1 @,v) = C—?(G +1)°.
Thus, the Riemannian metric is
1 /900 +1)?
+ _ 2 3.2
g, (0, v) = c <740 do< 4 (6 4 1) dv” ) .

If we consider the change of coordinates (8, v) = ((sinh u?, 3v), where u # 0, we obtain

9
gl (u,v) = 3 (coshu)® (du® + dv?).
1
. . . . . 1/3 . . .
Since C; is an arbitrary positive constant, we can consider C; = (%) 3 where C is the positive constant corresponding to
gc, and therefore gct = g.

Now, we can find a biconservative immersion from the half plane u > 0 with the metric g¢ in R>. The profile curve can
now be written as

+(U): ! 13 (W), 2 13 (W)
" ("<s>/ ()"

cl2 3
= 3 ((cosh w3, 3 (sinh u cosh u + log (sinh u + cosh u)))

c? 3/1
=3 <(coshu)3, > (5 sinh 2u + u)) ,  u>0.

Therefore, the biconservative immersion from the half plane u > 0 with the metric g¢ in R? is given by

cl2 3/1
Xc+(u, v) = =5 ((cosh )3 cos 3v, (cosh u)? sin 3v, 5 <5 sinh 2u + u)) ,

whereu > 0andv € R.
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A

.

Fig. 1. Plot of the profile curve (o7 (1), o2 (w)).

For the other half plane, i.e.,, u < 0, using the symmetry with respect to Op, we define the profile curve

ocw) = |o) (—u), —o? (—u)>

‘ ( ()" ()"

cl2 3 31 .

=5 ((cosh u)’, 3 (5 sinh 2u + u)) , u<0.

Now, it is easy to see that we have a biconservative immersion, in fact a biconservative embedding from the whole
(R?, gc) inR?, given by

c? 3 /1
Xc(u, v) = = ((cosh 1) cos 3v, (cosh u)? sin 3v, > <5 sinh 2u + u)) . O

Remark 4.2. For C = 1 the plot of the profile curve of X; is given in Fig. 1.

4.2. Biconservative surfaces in S

Finding the explicit expressions of complete biconservative surfaces in S* is more complicated and we will need some
intermediate results.

Proposition 4.3. Let (M2, g) be a Riemannian surface with g = e2*™) (du® + dv?), where u = u(¢) satisfies

¢ dt
u=u(p) == +c, pel,
%) ge—Zr/3 _ le +a

wherea,b,c € R,a > 0,b < 0,and 2e72//* — e +a > 0 forevery ¢ € I, withI some open interval. Then (M?, g) is isometric
to

3 1
Dc, gc = d&* + —do? ),
(b = sz )

where Dc = (&p1,&02) X R, C € (33% oo) is a positive constant, and &y, and &g, are the positive vanishing points of
—58/3 + 3C€2 —3,with0 < 50] < 502-

Proof. Since

¢ dt
+ C’

u:MWZi/
%o /26721/3 _e2 g
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we have that

1
du ==+ do,

—2¢/3
\/ge—e P _ e 4q

and the expression of metric g(u, v) = e*?® (du? + dv?) can be rewritten as

e

— 2 2¢ 4.2
glp,v) = I —e2‘/’+ad('0 + e*dv.

Consider the change of coordinates (¢, v) = (log <( LR ) , v) and we get that
¢,v) = &
v
¢ & (e
Now, considering another change of coordinates (¢, v) = (£, (—b)~*#6) and denoting C = a(—b)~** > 0, we obtain
(£,0) = ! 3 d&? + do?
&S, - 52 _58/3 + BCEZ 3 ’

for every & € J, where J is an open interval such that —£8/3 4 3C&2 — 3 > 0, for any positive & € J and C a positive constant.
Next, we will determine the interval J. If we denote

T(€) = —&%3+3C&* -3, £>0,
by straightforward computation, we get that T(§) > O for any & € (§o1, &02), Where T (§p1) =T (§p2) = 0,

3/2 3/2
&1 € (0, (gC) ) and &y € ((jC) ,oo)

are the only positive vanishing points of T and C € (33/2 , oo).

ds2 + (—b)3/4du2> .

Therefore, (M2, g) is isometric to (Dc,gc = Wdéz + d92> where D¢c = (&1, £02) X R, C € (33/2, oo),
and £y, and &y, are the vanishing points of —£%/3 4+ 3C£2 — 3, with 0 < 501 <&p. O

The Riemannian surface (D¢, gc) has the following properties.

Theorem 4.4. Consider (D¢, gc). Then, we have

(@) 1 —Kc(§,0) = 36%°3 > 0,K.(§) = —£ &5/ and grad K¢ # 0 at any point of D¢;
(b) the immersion ®¢ : (D¢, g&c) — S° given by

/ / cos(f CH) sin(+/CH)
Dc(£,0) = ( 1— cosg“ 1_C7.§2 C{-‘ s f& )

is biconservative in S3, where
& \/“.[4/3
/500 (=14 Ct2)s/—183 +3Ct2 —

and c is a real constant.

(&) ==

Proof. Consider the Riemannian metric

3
= dE? + - do?
E=peniie-n" e
on D¢ with coefficients given by
3 1
Ec =811 = , Fc=812=0, Gc=gn=—=. (4.1)

§2(—£%7 +3C57 - 3)
Using the formula of the Gaussian curvature

0=z (s (&) 5 (@)

EZ
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we obtain that K¢ is given by

1. g3
Kc(§,0) =Kc(§) = —§€ +1
and
8
K/ - _ 5/3.
(&) 275
Therefore, K/ (§) < Oatany & € (£p1, &2). Since

2(_s8/3 3C 2 —3
(grad Ko) (€, 0) = -5 s I e,

we have that |(grad K¢) (&, 6)| # 0 for any (&, 0) € Dc.
To prove (b), let us first recall that, if M is a biconservative surface in S>, with f > 0 and gradf # 0 at any point of M,
then M can be locally parameterized by

16 16 4cosv 4sinv
Dc, (k,v) = 1— —k32cosu, [1— —k32sinpu, , ,
atv) (\/ 9C; o \/ 9, W TN 1<3/4)

for any (k, v) € (koi, ko2) X R, where ko; and ko, are the vanishing points of—%k2 — 16k* + C1k7/2, ko1 € (0, (63—4C1)2),
2
koz S ((%C]) ,OO),Cl 35/4,31'1(:1

2
\/ —16+9C113/2

d
/"" Jer O T EG T 61557))

wn(k) =

T + Co,

where ¢y is a real constant.
In order to compute the metric on this surface, we need the coefficients of the first fundamental form

81C;k%/% — 144
k2 (9C1k3/2 — 16) (9C1k3/2 — 16 (14 9k2))’
FC] (kv v) = 07 GC1 (k7 U) =

Ec, (k,v) =

9C1 k3/2 ’
Thus, the Riemannian metric is given by
81C;k3/% — 144 16
! di* + dv?.
k2 (9C1k3/2 — 16) (9C1k3/2 — 16 (1 4 9k?)) 9C; k372

gc, (k,v) =

We write C; as C; = 16 - 3!/4C, where C € RY, and we know that C; > 3%, which implies C > 33%. Therefore, we can
choose C to be the positive constant for the metric (D¢, gc¢).
We note that we can consider the change of coordinates

(k, v) = (3*3/254/3, VG 9),

4.318

where & and 6 are the coordinates on the domain Dc. We have indeed

27 16
—£83 13062 -3 = e (-518 — 16k* + C1k7/2>

and, therefore, the vanishing points &; and &g, of —£%/3 4 3C£% — 3 are the corresponding points to ko; and koy, i.e., £9 =

39/813% and &g, = 398k,
Thus, we get the expression of the initial metric
3
gc(&,0) = dg? + —dez (€,0) € Dc.

%-2 (_%-8/3 + 3C§'2 _ 3) %-2

The local parametrization of the surface can be rewritten as

/ cos(f&) sin(x/CH)
Dc(£,0) = (\/;cosg l—C—%_2 C?;‘ , \/»5 )
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for any & € (&01, &02) and 6 € R, where ¢ = u(k(§)) is given by

e =+ Ve
to (—1+C12) /=183 +3C72 -3

wherec e R. 0O

dt +c,

Remark 4.5. The Gaussian curvature of (D¢, g¢) does not depend on C.

B 861173 (—£8/3 43062 -3)
81

lim (grad K ,0) = lim (gradK ,0) =0.
s\sm(g c)&,0) E/,Eoz(g c)&,0)

Remark 4.6. Since (gradKc) (€, 60) = ¢ forany (&, 8) € D¢, we get that

Now, we denote

§ NE=E
%o(8) =f dr.
g0 (—1+CT2)A/—183 +3C72 -3

Next, we state the following lemma, that we will use later in our paper. Its proof follows using standard arguments.

Lemma 4.7. We have

E]\ig;] to(§) =01 > —0o0  and Sl/i’rg*[;z Go(§) = &o,1 < 00.

The next result shows that we do have a one-parameter family of Riemannian surfaces (D¢, g¢).

Proposition 4.8. Let us consider (Dc, g = Wdéz + Eizd92> and (Df,gf- = Wc@z + gizdéz).

The surfaces (D¢, gc) and (Dﬁ,gﬁ) are isometric if and only if C = C and the isometry is ©(£,60) = (&, 60 + ay), where
ay is a real constant.

Proof. Assume that there exists an isometry © : (Dc,gc) — (D¢, g¢) and denote ©(£,60) = (©'(£,0), O%(&,0)). As
we have seen in Theorem 4.4, the Gaussian curvature of (D¢, gc) is K(§,0) = —%ESH + 1 and the Gaussian curvature of
(D¢, ge) isK(E,0) = —3&%° + 1.

Since @ is an isometry, we have that I?(@(é, 0)) = K(&,0) and, taking into account the above expressions of the
curvatures, we get ©'(¢, 6) = & > 0. Therefore, © (£, 0) = (&, ©%(£, 0)).

Next, from (©*g¢) (3¢, ) = gc (3¢, 0¢ ), i.e., 8¢ (O, ©.05) = gc (¢, 9 ), using (4.1), we find

3 B 3 (2@ 2 42)
—E8/3 +3C62 -3  —g8343Ce2—3  \ 9E ) .

Similarly, from (©*gz) (3, ) = gc (3¢, 9p) and (©*gz) (39, %) = &c (3, o), using (4.1), we get

062 90?2 06?
= . an =41 (4.3)
9 00 30
From (4.3) one obtains 3522 = 0. Now, using (4.2), it follows that C = C. Since 35'); = 0 and 35";2 = =1, we have

O©(&,0) = (€, £0 + ay), where a, is areal constant. [

The Riemannian surface (D¢, g¢) is not complete. In order to find a complete biconservative surface in S3, we will first
construct a complete surface of revolution in R3. We begin with the following result.

Theorem 4.9. Let us consider (D¢, gc), where Dc = (&01, £02) X Rand C € <33% oo). Then (D¢, gc) is the universal cover of

the surface of revolution in R> given by

% 0
WC,C* (gv 0) - (f(‘g) cos Esf(g) sin E» h(f)) 5 (44)
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wheref(§) = =

312 — (c* —8/3 +3C72 - 3)
h(¢) = / dr +a, (4.5)
00 r8/3 +3C12 —3)

~1/2
C* e (0, (C — 33%> ) is a positive constant, a is a real constant and &y is an arbitrary point in (£g1, £o2).

Proof. In fact, we can prove that if (D¢, g¢) is (locally and intrinsically) isometric to a surface of revolution, then it has to be
of the form (4.4). To show this, let us consider

7 (8.6) = (F()cost.f (§)sind.h(2)). (58)eb

a surface of revolution, where D is an opensetinR?>and © : (D¢, g¢) — (ﬁ, g) an isometry, where
£(60)= (070 + (+(0) )+ (1 ()

We will assume thatf <§> > 0 for any §

Next, we will proceed in the same way as in the proof of Proposition 4.8. From I~<(@ (£,0)) = K(E,0),weget ®1(&,0) =
©1(&). In order to simplify the notations, we write ©®! = £ and ©2 = 0, so that £(£, 0) = £(£). As ©*g = g¢, we get

~\ 2
(gg) (r(E®) -5 (46)

and

90 (20))) =0 (47)

96 9 o '
From (4.6), we get that 75 0, and then, from (4.7), it follows that 57 39 = 0. Thus we have 9(5 0) = 0(9). Again from (4.6),
one obtains (gg) m Since the left hand term depends only on 0 and the right hand term depends only on &, it
follows that

~ [~ Cc*

f (f(f)) = ?s (4.8)
where C* € RY, and

0
0(0) = — +a,

where ag € R. In the following, we shall consider a; = 0.
Hence, we obtain

/ 2 N 2
<(f°‘§> (5)) * ((hoé) (5)) Nz (_58/3j3c52 —3)

and, from (4.8), one has
N 2 352 _ (C*)Z _58/3 + 3C§2 -3
<<h oé) (€)> - 2 8(3 2 ) (4.9)
£2 (—£8/% + 3082 - 3)
Next, we have to find the conditions to be satisfied by the positive constant C*, such that 3§ — (C*)* (—&%2 + 3C&2 — 3)

—1/2
> Oforany & € (&1, &2), whereC > 33% is fixed. By standard arguments, it can be shown thatif C* € (0, (C — 33%) )
then the above inequality holds and

372 — (c* —78/3 +3C72 - 3)
(h oE) () = / s . dr +a,
00 -7 / +3C72 - 3)

for any & € (o1, &02), where a is a real constant.



S. Nistor / Journal of Geometry and Physics 110 (2016) 130-153 145

Next, we consider ¥¢ ¢+ = ¥ o O defined by
Ve (€,0) = ((Fok) (@ cos (5(9)) (Fod)@sin(0@). (ko) ®)
(f(é) cos . f(€)sin . I (é)) (.6) € D,

where C > = is a positive constant, C* & (0 N 3332322 4) fe =< and

372 — (C* —78/3 4+ 3C72 - 3)
h) = / 8/3 5 dr +a,
fo0 —78/3 4+ 3C72 - 3)

forany & € (§o1, &02), witha a real constant. O
Remark 4.10. The mean curvature function of ¥¢ ¢+ is given by
952 — (C*)? (—2£%° + 9C&2 — 18)

6C%\/982 — 3(C*)? (~£%3 + 3C52 - 3)

and we can see that it depends on both C and C*.

fC,C* =

12
Remark 4.11. From now on, we will take &y = (5C )3/2 € (&01, &g2) and C* € (0 (C - 3%) )

The function h has the following properties which follow easily.

Lemma 4.12. Let

" 372 — (c*)2 —18/3 43072 — 3)d
o) = /goo o5 1300 3) T, & € (501, 802) ,

i.e., we fix the signin (4.5) and we choose a = ag = 0. Then
( ) llmg\gm ho(é) = hg’_l > —oo and llmg/véoz ho(s) = ho’] < o0,
(b) hy is strictly increasing and

lim h, = lim h, =00
£\kor o®) £/ o®)

() limg\ g, hy(€) = —o0 and limg qgy, hy(§) = oo

We have shown that (D¢, g¢) is isometric to the surface of revolution given by ¥¢ ¢+ and this surface is not complete.
Alternating the sign in (4.5) and with appropriate choices of the constant a, we will construct a complete surface, which on
an open dense subset is locally isometric to (D¢, gc¢).

First, let us consider the profile curve og(§) = (f(§), ho(&)), for any & € (&p1, £02). Obviously, hy : (o1, &02) —
(ho,—1, ho,1) is a diffeomorphism and we can consider hy' : (ho_1,ho1) — (601, &), with hy' @ & = &(h),
he (hoyfl, h().]).

In order to extend our surface in the upper part, we ask the line h = hg ; to be a symmetry axis. Therefore 2hy 1 =
ho(&) + h1(§), where h; : (§01, £02) — R, and then we get hy (&) = 2hg 1 — ho(£); thus, a = a; = 2hg ;. It is easy to see that

lim h = 2ho1 — ho.—1, lim h = ho1,
ool 1(6) 0.1 0,~1 iy 1(8) 0.1

and, since hj(§) = —hy(§) < O, for any & € (&, &p2), it follows that h; is strictly decreasing and hy (§01, &02) =
(ho,1, 2ho,1 — ho.—1). Since hy is a diffeomorphism on its image, we can consider hy' : (ho.1, 2ho1 — ho.—1) = (€01, &02),
with h;1 . 51 = S] (h),h S (h(),], 2h0,1 — ho,,1).

It is easy to see that

hl/i'm &1(h) = &ny, lim §1(h) = &o1,

h™\i2ho,1—ho,—1
and, since (hy ) (h) = w (gi(h)) < 0,forany h € (ho 1, 2ho 1 — ho 1), it follows that h ! is strictly decreasing.

Next, we define a function Fy : (ho,—1, 2ho,1 — ho,—1) — R by

g1(h), he (hoy.2hoq —ho 1)
Fi(h) = {802,  h=ho;
§(h), he (ho.fl, ho,l) )

and we will prove that F; is at least of class C°.
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Obviously, F; is continuous.
In order to prove that F; is of class C!, we first consider h € (ho,—1, ho,1)- In this case, we have

1
Fi(h) = &)(h) = ——
1(h) =&(h) R o)
and
1 .
JAm B = lim &)= lIm e~ e @ "

Then, we consider h € (hoj, 2hg,1 — ho,—1), and we get

1
F/(h) =&(h) = ———
(=& W& ()
and
1 . 1 .
lim Fj(h) = llm 51(’1) ———— = 1lim ——— = lim —— =
hN\ho 1 h\hm h (3;'1 (h)) &% hl(é) & /&0 —hO(S)

Therefore, limy, s, , F{(h) = limp s, , F{(h) = 0 € R, which means that there exists F; (ho 1) = 0 and F; is of class cl.

In a similar way, one can prove that F; is of class C? and C3.

In order to extend our surface in the lower part, we ask the line h = hg _; to be a symmetry axis. Therefore, 2hy _1 =
ho(&) + h_1(&), where h_; : ({01, &02) — R, and we get h_1(§) = 2hg _1 — ho(§); thus, a = a_; = 2hg _;. It is easy to see
that

lim h_ = 2hg -1 — ho.1, lim h_ =hg_1,
Jm 1) 0,—1— ho.1 Am 1(6) = ho, 1

and, since h”_;(§) = —hy(§) < 0, forany & € (&1, &n2), it follows that h_ is strictly decreasing and h_q (£01, &02) =
(2ho,—1 — ho.1, ho,—1). Since h_ is a diffeomorphism on its image, we can consider hy : (2ho,—1 — ho,1, ho.—1) = (601, &02).
with h:} : 3,:,1 = sfl(h), h e (2h0’71 — h()_], h0’71).

It is easy to see that

lim —1(h) = &o2, lim &_;(h) = &0,
ol Ea) =, M £ () = &

and, since (h- ) (h) = m < 0,forany h € (2hg_1 — ho 1, ho_1), we get that h™| is strictly decreasing.
&

Further, we define the function F_; : (2ho,—1 — ho 1, ho,1) — R by

So(h), he (hO,—lv ho,])
F_1(h) = { &o1, h =ho 4
£_1(h), he (2ho_1 —ho1,ho_1),

and, in a similar way to the proof of C> smoothness of F;, we can show that also F_; is at least of class C>.

Now, we extend the functions F; and F_; to the whole line R. This construction will be done by symmetry to the lines
h=howkeZ.

We define h0,2 = 2h0_] — h()iyfl, h0’3 = 2]’10’2 — hO,l = 3h0y1 — Zh(),,], etc.; then hO,*Z = 2h0’,] — ho_], h0,,3 =
2hg,_3 — ho,—1 = 3hg,_1 — 2hg 4, etc. This way we obtain

o [khoi— (= Dho_1, k=1
Ok =Y _khy_1+ (k4 Dhoq, k< -—1.

The functions hy are obtained in the same way. For example, h1(§) = 2ho 1 — ho(§), ha(§) = 2hgo — hi(§) = 2ho 1 —
2ho, 1 + ho(£), etc.; then h_; () = 2ho._1 — ho(§), h_5 (&) = 2ho_» — h_1(§) = 2ho 1 — 2o 1 + ho (&), etc. In general, we
have

_ J2hox — 1 (§), k=1
hk(g) - {zh(),k - hk+1($)s k S _]

We note that for h, we have the following formulas

h (%-) _ k (hO,l - hO,—l) + ho(g), k= 2p7 p € Z
ST =V (k+ Dhoq — (k— Vhg _1 — ho(E), k=2p+1, p e Z.
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ha

/

Y

Fig. 2. Plot of hg.

Denoting the inverse of the function hy by &, we define the function

&o1, h=hoy k=2p, p>1
02, h=hoy, k=2p+1,p=0
&), he (hog hoks1), k=1
o2, h = ho

F(h) = {&(h), he (ho_1.ho1)
o1, h=ho 4
&), he (hor-1,hox). k<—1
&o1, h=hoy, k=2p—1,p=<0
02, h=hoy, k=2p, p<-—1,

which is at least of class C3.

Remark 4.13. WhenC = C* = 1,a = 0and &y = (%)3/2:

372 —
ho(§) = / \/
)

M) =
(2m@©) andoy©) = (.1

—78/3 +3C72 - 3)
—78/3 4+ 3C72 - 3)

2ho1 — ho(§), h—1(§) = 2ho,_1 — ho(§), and of corresponding profile curves op(§) =

1(5)), for £ € (&o1, £02), are as in Figs. 2-5.

the plots of

Remark 4.14. The function F is periodic with main period 2 (ho,1 — ho,—1).

Remark 4.15. The function F depends on C and C*.

We define oy (§) =
the surface of revolution given by

0
Ve (§,0) = <f(S)COS &) sin — hk(E))

We can reparameterize oy and one obtains

o (M) = ((f o &) (M), h)
o (o(M) = ((F o &o)(), h)
o (§(M) = ((f o &) (M), h)

Now, let us consider the profile curve
oh)y=(foF)(M),h), hekR

ox(h) =

Of course, o is the graph of the periodic function f o F, and it is at least of class C3. We can state the following theorem.

=(feohH(),h),
=(Foh(h),h),
=(fob(h),h),

(&,60) € Dc.

h € (hok hoks1), k=1
he(ho1,ho1), k=0
he (hok-1,hox), k=<-1.

147

(2 10®) o ®) =

(f (&), hi(§€)), & € (E01, £E02), where k € Z. From Theorem 4.9, we know that (D¢, gc) is isometric to
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hlk
////
3
Fig. 3. Plot of hy, h; and h_;.

ha

!

Fig. 4. Plot of oy.

hlk

S

Fig. 5. Plot of 0g,07 and o_.
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Theorem 4.16. The surface of revolution given by
0 .0 2
e cx(h, 0) = | (f o F)(h) cos rat (f o F)(h) sin o h), (h,0) e R%,

is complete and, on an open dense subset, it is locally isometric to (D¢, gc). The induced metric is given by

3F2(h) ,

= dh* + de?,
3F2(h) — (C*)* (—F8/3(h) + 3CF2(h) — 3) F2(h)

gc,cx(h, 0)

(h, 8) € R Moreover, grad K # 0 at any point of that open dense subset, and 1 — K > 0 everywhere.

From Theorem 4.16 we easily get the following result.

Proposition 4.17. The universal cover of the surface of revolution given by W¢ ¢+ is R? endowed with the metric gc c+. It is
complete, 1 — K > 0on R? and, on an open dense subset, it is locally isometric to (D¢, g¢) and grad K # 0 at any point. Moreover

any two (Rz, gc.q«> and (Rz, gcyq) are isometric.

Proof. We only have to prove the last statement. We construct the isometry between (R?, gc -+ ) and (R?, gc ¢+ ) in
1 2

a natural way, in the sense that, for example, it maps the interval (ho,—u ho,l) corresponding to Cj onto the interval

(ho,—1, ho’l) corresponding to C;. Repeating this process, we obtain an (at least) (3 diffeomorphism of R?. It is easy to see
that such diffeomorphism is a global isometry. O

From Theorem 4.4 and Lemma 4.7, we have that @¢ : (D¢, gc) — S°,

_ 1 1 . cos(+/CO) sin(+/CO)
q)C(S’G)_(\/1_C§2COS§’\/1_C.§ZSIH{’ «Eé‘ s «/ES )

with ¢ (&) = % (£ (£) + ), is a biconservative immersion in S and

lim ={g_1 > —00, lim = < 00.
Jm $o(§) = So,-1 Jm $o(§) = Son
In the last part of our paper we will construct a biconservative immersion from (Rz, gc’c*) in S3, as we claimed at the
beginning of this section.
In order to do this, starting with the first component of the parametrization, we consider the following continuous
functions defined on [&p1, £n2]:

T‘
| e

1— ——=cos($) +a), § € (o, bo)

1
o &) =1 |1- oz o (o—1+c), &=én
01

1
1— —-cos(fo,1+c), & =énm,
ceg, o+

where ¢, € Rforany k € Z.
Next, consider the function ¢! : R — R defined by

(®g oF) (h), he[hoy hosr], k=1
®'(h)={(®g oF) (h), he[ho_1. ho1] (4.10)
(¢[: o F) (h), h € [ho,kf]a hO.k] ) k =< -1

We will prove that @ is of class C3. Since F is a periodic function, with main period 2 (hoJ — ho,_1). it is enough to ask @!
to be a C3 function on the interval (ho, 2, ho2) = (2ho,—1 — ho,1, 2ho,1 — ho,_1). This means that it is enough to study the
behavior of F at hg _1 and hg ;.

First, we ask @ to be continuous at hy _; and hg 1, i.e.,

m ®'(h)= lim ®'(h) eR.

lim ®'(h) = lim @'(h) € R, li li
h™\ho 1 h™N\ho, -1 h/ho 1

h,/hg 1
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Since

lim ®'(h) = lim ®}(FH)) = lim @/ (&(h
plim (h) Wi o (F(h)) pm 0 &o(h))

= Ellrg(l) <D0 &) = — %gz cos (é‘o.l + Co) eR
and
Jm ®'(h) = A @1 (F(h) = Jm @1 (& (h)
= lim &/¢) = [1- %cos (¢o.1+c1) €R,
£ k0 C&2
we get that cos (£o,1 + o) = cos ({o,1 + ¢1). Therefore, we have two cases, as ¢ = ¢o + 2517 Or ¢; = —24o,1 — Co + 2817,

where s; € Z, i.e.,
c1=¢c(mod2w) or ¢ = (—2{0,1 - Co) (mod 27) .
In a similar way, for hy _;, we have

. 1 _ : 1
hm @'(h) = llhlgll Dy (F(h) = h\hf{{',l Dy (6o(h))

0 1
= lim @/ ———c0s(lp—1+C) €R
Am 0 (&) = 501 (¢o.-1+ o) €
and
lim &'(h) = lim @/(F(h)) = lim & (_i(h
am (h) pim 1F@) = T @;(-1(h)
= lim @/ —- C0S _1+c_1) €R.
A 21(8) = gm (¢0.1 )

Hence, we must have cos (;0,,1 + co) = CoS ({o,q + 671). Therefore we again have two cases as c_; = cg + 25_17 or
C_1 = —28o,—1 — Co + 2s_ym, wheres_; € Z,i.e,c_1 =co(mod 2m) orc_; = (—250,71 - co) (mod 27).
By some straightforward computation, we can see that @' is of class C! on the interval (ho,,z, ho,z) if and only if
sin (Co,l + Co) = —sin (Co,l + cl) and sin (;0,_1 + co) = —sin (;0,_1 + c_1) .
We recall that, from the continuity of @', there are two possibilities for each ¢; and c_; and we can then choose

¢1 = (—2%0,1 — ¢o) (mod 27) and c_y = (—2Zo,—1 — o) (mod 277) .

With this choice, one obtains that & is of class C* on (ho, 2, ho ).
In general, if we ask @' to be of class C* on R, since F is periodic, it can be shown that we have the following relations
between two consecutive c,, where k € Z:

(=2¢01 —-1) (mod2mw), k=2p+1, peN

) (-2%0,-1 — 1) (mod2m), k=2p, pPeEN
o = (4.11)
(—2¢0-1 — Ck41) (mod2mw), k=2p—1, peZ_
(—2¢01 — Cks1)  (mod 27), k= 2p, peZ_,

or, equivalently,

o (=2%01—c-1)  (mod2m), k=2p+1, peZ
= (=2%0,-1 — ¢x—1) (mod 27), k=2p, pez.

We note that for ¢y, we also have the following formulas

(k (201 — Zo,-1) + <o) (mod 27), k=2p, pEZ (4.12)
(k=101 — (k+ Do1—co) (mod27), k=2p+1, peZ ’

Ck =
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To study the second component of the parametrization @, we will work in a similar way as for the first one. We consider
the following continuous functions defined on [&q1, &gz ]:

1
(—1)k‘/1 T sin(&o(§) + ), & € (o1, 502)
1
PE) =1 (D" [1— —sin(G1+a). &=én
C&
/ 1
(—DF [1- ?3251“ (Co1+ck), &=E&n,

where ¢, € R, for any k € Z, are given by (4.11).
Then, we consider the function 2 : R — R defined by

(®f oF) (h), he[hoy hopr]. k=1
®*(h) = { (®5 oF) (h), he [ho_1,ho1] (4.13)
(@7 oF)(h), he [horr.hor] k=< —1.

It can be shown that, with these choices of the constants c;, @2 is of class C3. The proof is similar to the proof of C*
smoothness of @,
For the third component of the parametrization &, we consider the following function

1
‘DS@)ZITS, & € [&o1, &o2],

It is obvious that <1>3 is a smooth function on [&p1, &p3].
Let us consider a new function @3 : R — R defined by

@3(h) = (@ oF)(h), heR. (4.14)

Since F is at least of class C* on R and @ is smooth on [&p1, £o2], it follows that @ is at least of class C* on R.
For the fourth component of the parametrization @¢, we define ®* as @3, i.e.,

o*(h) = (@3 oF)(h), heR, (4.15)

where @3 (§) = «/%S' forany & € [£o1, &02]-
Now, we can conclude with the following theorem.

Theorem 4.18. The map ®c ¢+ : (R?, gc c+) — S°, defined by
¢ c+(h, 8) = ®c(F(h), ) = <¢1(h), @2 (h), @3(h) cos(~/CH), ®*(h) sin(ﬁe)) ,

(h, 0) € R? where @', 2, &3 and ®* are given by (4.10), (4.13), (4.14) and (4.15), respectively, and the constants cy are given
by (4.12), is a biconservative immersion.

Proof. Obviously, for h € (ho, hoj+1), whenk > 1,0orh € (ho_1,ho 1), or h € (hoy—1,hox), when k < —1, ®¢ cx
is a Riemannian immersion and it is biconservative. As @¢ ¢+ is a map of class C 3 and the biconservative equation is a
third-degree equation, by continuity, we get that @¢ ¢« is biconservative on R, O

Remark 4.19. For C = C* = 1and ¢; = 0 we obtain the following plot of (7 o ®11) (h,6), when h € (ho,_11, ho,11);
7 : R* — R? denotes the projection that associates to a vector of R* its first two components (see Fig. 6).

Remark 4.20. We note that & ¢+ has self-intersections (along circles).

Proposition 4.21. The complete biconservative surfaces given by Theorem 4.18 are unique (up to reparameterization).

Proof. Wefirst denote by Sc ., the surface defined by &¢ : (D¢, g¢) — S3. Of course, Sc,q, and Sc ¢, are extrinsically isometric.
The boundary of S¢ ¢, is given by the curves:

] ’ 1 cos (ﬁQ) sin (ﬁQ)
mcos (¢o,—1+ ), (=1) \/ESIH (¢o-1+ ), N
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Fig. 6. Plot of ( o ®1,1) (h,0), when h € (ho,_11, ho,11).

1 / f 1 cos (\/EQ) sin (ﬁ@)
1-— ?32 Cos (;0,1 + Ck) N (—1) 1-— ?gz sin (CO,] + Ck) . \/Eé:oz s \/EEOZ

These curves are two circles in the affine planes

1 ; 1 _
1— —5 cos (¢o,—1 + &) . (=1* |1 — —sin ({o,—1 + k) . 0,0 ) + span {es, &}
501 C‘%-O]
1 ) 1 _
1— — cos (¢o.1 + ), (=D [1— —sin(¢o.1 + ). 0,0 +span {3, &},
Cgoz CEOZ

respectively. The radii of these two circles are ﬁ],g fs , Tespectively.

If we want to glue two surfaces S¢ ¢, and S¢v ¢, then, we must do it only along the boundary, and the proof of this result is
similar to the proof of Proposition 2.6. This implies that the two affine planes, where the boundaries lie, coincide and C = C'.
Thus, along the boundary, we can glue surfaces only of type Sc ¢, and Sc .

If we consider, for example, Sc ¢, and Sc ¢, and glue them along the boundary

1 1 cos («/69) sin (ﬁ@)
11— 2 —-cos (¢o,1 + o), 11— e, sin (¢o.1 + €o) » N

for S¢ ¢, and

] 1 cos (ﬁ@) sin (\/EG)
\/ECOS ({0,1 + C]) s _\/g sin (;0,1 + Cl) ) \/6502 ’ ﬁgoz

for Sc ¢, we get¢c; = (—2{0,1 — Co) (mod 2r), as we have already seen. Then, at a boundary point, using the coordinates
(h, 6) we get that the tangent plane to the closure §C.,60 of S¢ ¢, is spanned by a vector tangent to the boundary and the vector

and

and

4/3 4/3

————=—sin {0 1+ Co
V CSOZ - ] V C‘SEOZ

and, at the same boundary point, the tangent plane to SC’C1 is spanned by a vector tangent to the boundary and the vector

cos ;m—l—cg 0,0

4/3 4/3

Wsm ;“01—{-61 \/?

cos §01+c1 0,0
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Asc, = (—2(0,1 — co) (mod 2m), the two tangent planes coincide.
However, we must then check that we have a C3 smooth gluing. O

We end this paper with an open problem.

Open problem. Is there a biconservative immersion @ : (MZ, g) — §3 where M is compact, 1 — K > 0 on M and grad f
does not vanish at any point of an open dense subset of M?

Since F is periodic, (Rz, gc,c*) can be quotient to a torus, but we do not know if &¢ ¢+ is periodic. Some numerical
experiments suggest that @ -+ would not be periodic.

Conventions

We denote an abstract Riemannian surface, or an abstract Riemannian manifold by (M, g). To avoid any confusions, in
the case of surfaces, we denote S? the image in the ambient space of an abstract Riemannian surface (Mz, g) through the
immersion ¢.
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