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1 Introduction

In the last years, the vector optimization �eld received a new impetus with the introduction of
variable ordering structures. The main reference which gives a good "big picture" on this subject
is [8]. Many e¢ ciency notions are introduced and studied as well in [2, 9, 11]. In these mentioned
references, the variable ordering structure is seen as a set-valued map from the output space of the
objective mapping to itself.

A di¤erent perspective is proposed in [6], where the ordering mapping acts between the same
spaces as the objective mapping. This was motivated by the authors of [6] that it is a natural
requirement for both objective and ordering mappings to act between the same spaces. In this
paper we follow the same approach and the objective in this context is twofold. On one hand, we
introduce two new notions of minimum and we study their relations with the other notions and
the classical e¢ ciency concepts in vector optimization. On the other hand, we propose necessary
optimality conditions in terms of Fréchet and Mordukhovich coderivatives of both objective and
ordering mappings. The investigation for the second mentioned objective allows us to motivate the
presence of the two notions of e¢ ciency we study, since these are united by the methods we use.
In both cases we work with the sum of the coderivatives of objective and ordering mappings.

In this paper we consider the so-called vector approach in set optimization which is di¤erent to
the set approach, where the sets are compared directly by set relations (see [10] and the discussions
and the references therein). The paper is organized as follows. In the second section we describe
the two e¢ ciency notions we deal with and we discuss their links with other notions in this �eld.
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The �rst concept that we de�ne is the one of sharp e¢ ciency for set-valued maps. The second
one is a notion of robustness, because it allows to deal with di¤erent scenarios and to look for the
best solutions that work well in all possible scenarios. Thus, the introduction of this concept is
motivated by the fact that at the moment when we want to solve uncertain optimization problems,
usually it is not known which scenario will occur (for an overview about robust optimization see
[3, 14]). We compare these two concepts with several notions from literature. In Section 3 we
introduce the main facts from generalized di¤erentiation calculus we need in the sequel. Sections 4
and 5 propose optimality conditions for the two notions introduced in Section 2. The methods of
study are di¤erent, but the �nal conclusions are comparable in a sense we make explicit in the last
section.

2 Two new concepts of e¢ ciency

Throughout this paper, we assume that X and Y are Banach spaces over the real �eld R, unless
otherwise stated. By B (x; ") we denote the open ball with center x and radius " > 0 and by
BX the open unit ball of X: In the same manner, D (x; ") and DX denote the closed balls. The
symbol V (x) stands for the family of neighborhoods of x. We write clA to denote the topological
closure of a set A and we put intA for the topological interior of A: The notation X� designates
the topological dual of X; and by w� we mean the weak star topology on X�. If K � Y is a cone,
then its positive dual cone is de�ned by

K� := fy� 2 Y � j y� (y) � 0; 8y 2 Kg :

We denote the distance function dM : Y ! R from y 2 Y to a nonempty set M � Y by

dM (y)
not:
= d(y;M) := inf

m2M
ky �mk for all y 2 Y:

Let F : X � Y be a set-valued map and f : X ! R be a function. In the sequel, the symbols
GrF; dom f and epi f denote the graph of F , the domain and the epigraph of f , respectively:

GrF := f(x; y) 2 X � Y j y 2 F (x)g ;
dom f := fx 2 X j f (x) <1g ;
epi f := f(x; t) 2 X � R j f (x) � tg :

Let K : X � Y be a set-valued map such that K(x) is a closed, convex, proper and pointed
cone in Y for any x 2 X: This leads us, for every x 2 X; to an order relation on Y : y1 �K(x) y2 ,
y2 � y1 2 K(x): Here the fact that K(x) is proper means that K(x) 6= f0g and K(x) 6= Y:

We consider the following optimization problem

(PS) minimize F (x) , subject to x 2 S;

where S is a nonempty subset of X: If S = X; we denote the associated (unconstrained) problem
by (P ).

In our knowledge, no notion of sharp e¢ ciency for set-valued mappings exists in the literature,
where the e¢ ciency is taken with respect to an order given by a set-valued map. We �ll this gap
with the following notion, which in the classical case was investigated under several versions in [12]
and [5].
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De�nition 2.1 Let " > 0 and  : (�";+1)! R be a nondecreasing function on [0;+1) with the
property that  (t) = 0 if and only if t = 0: One says that a point (x; y) 2 GrF \ (S � Y ) is a weak
 -sharp local nondominated point for (PS) if there exist � > 0 and a neighborhood U of x such that
for every x 2 U \ S; y 2 F (x) one has

d (y � y;�K (x)) � � (d (x;W )) ; (2.1)

where W := fx 2 S j y 2 F (x)g :

This notion is a vectorial version of the notion of weak sharp minima in scalar optimization, in
the sense made precise, for instance, in [20, Section 3.10]. The term "weak" refers here at the fact
that the set of argmin points (that is, W ) may be not a singleton. In the case where W = fxg ; we
drop the word "weak" and then we have the notion of  -sharp local nondominated point. The notion
of weak sharp minima is known to be an important tool in the sensitivity analysis of optimization
problems, as well as in the convergence analysis of some optimization algorithms. However, in this
paper our motivation is mainly theoretical, as further applications could be possible done later, on
this basis.

The presence of " in the above de�nitions will be needed for obtaining optimality conditions in
terms of di¤erential calculus, since we need the Fréchet di¤erentiability at 0 for certain function
(see Section 4). Notice that in general one can consider  : [0;+1)! R, but our small extension
of the domain is not restrictive for the functions  usually considered:  1 : (�1;+1) ! R,
 1 (t) = ln(1 + t);  2 : (�1;+1) ! R,  2 (t) = 1

1+t ;  3 : R ! R,  3 (t) = t;  4 : R ! R,
 4 (t) = arctan t:

Remark 2.2 (i) Observe that, in case that W = fxg and K(x) := Q for every x 2 (U \ S) n fxg,
where Q is a proper closed convex cone in Y , the notion from the previous de�nition reduces to the
notion of  -strict local minimizer for F over S, which was de�ned in [12].

(ii) It is simple to observe that if (x; y) 2 GrF is a weak  -sharp local nondominated point for
(PS), then for the same � and U as in De�nition 2.1, one has

d (y + z � y;�K (x)) � � (d (x;W )) ;

for every x 2 U \ S; y 2 F (x) and z 2 K(x).
Indeed, from the above de�nition, relation (2.1) holds for every x 2 U \ S; y 2 F (x) : Fix

x 2 U \ S and take y 2 F (x) and z 2 K(x). As �K (x)� z � �K (x) ; we obtain that

d (y + z � y;�K (x)) = d (y � y;�K (x)� z) � d (y � y;�K (x)) ;

and the thesis is proved. Obviously, this remark is true also for S = X:

Before introducing our second e¢ ciency notion, we recall the concept of local (weakly) non-
dominated point from [6].

De�nition 2.3 Let (x; y) 2 GrF:
(i) One says that (x; y) is a local nondominated point for F with respect to K if there is a

neighborhood U of x such that, for every x 2 U;

(F (x)� y) \ (�K(x)) � f0g :

3



(ii) If intK(x) 6= ; for every x in a neighborhood V of x; then one says that (x; y) is a local
weakly nondominated point for F with respect to K if there is a neighborhood U � V of x such
that, for every x 2 U;

(F (x)� y) \ (� intK(x)) = ;:

In this notion the argument x of the objective and ordering set-valued maps is the same, which
means that the decision maker takes into account only the preferences in the moment of the decision.
However, in the real world we often meet optimization problems with uncertain data. Thus, in the
following we de�ne the second new notion of minimum we deal with in this paper, which is in fact
a robust solution, since it is immunized against the e¤ect of data uncertainty.

De�nition 2.4 Let (x; y) 2 GrF:
(i) One says that (x; y) is a local robust e¢ cient point for F with respect to K if there is a

neighborhood U of x such that, for every x; z 2 U;

(F (x)� y) \ (�K(z)) � f0g :

(ii) If intK(z) 6= ; for every z in a neighborhood V of x; then one says that (x; y) is a local
robust weakly e¢ cient point for F with respect to K if there is a neighborhood U � V of x such
that, for every x; z 2 U;

(F (x)� y) \ (� intK(z)) = ;:

Remark 2.5 (i) Observe that, if K(x) := Q for every x 2 U; where by Q we have denoted a
closed, convex, proper and pointed cone in Y; then the notions given by the previous de�nition
reduce to the classical ones: the Pareto minimality and weak Pareto minimality of F with respect
to Q; respectively.

(ii) In the previous de�nition, if we take z = x for any x 2 U; then we get the notion of local
(weakly) nondominated point for F with respect to K. Thus we have the following implication: if
(x; y) is a local robust (weakly) e¢ cient point for F with respect to K; then (x; y) is a local (weakly)
nondominated point for F with respect to K. However, the reverse implication is not true. In this
sense, we give the following example.

Example 2.6 Let X = [�1; 1], Y = R2; F; K : [�1; 1]� R2;

F (x) =

8<:
f0g � [0; 1] ; if x = 0;�
(0; 0) ;

�
x; 1x

��
; if x 2 (0; 1];

;; if x 2 [�1; 0)

and

K(x) =

�
R2+; if x = 0;
f(0; z) j z � 0g ; if x 2 [�1; 1] n f0g ;

where [(a; b) ; (c; d)] is the line segment joining (a; b) and (c; d). It is easy to see that (0; (0; 0)) is
local nondominated point for F with respect to K, but is not a local robust e¢ cient point for F
with respect to K:

It is known that a point is local (weakly) nondominated for F with respect to K if and only if
that point is local (weakly) nondominated for F +K with respect to K: In the following lemma we
can see that we do not have this equivalence relation for the notion de�ned above, but we can get
a weaker one. In order to illustrate this, we consider Example 2.8.
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Lemma 2.7 Take (x; y) 2 GrF: Then (x; y) is a local robust e¢ cient point for F with respect to
K i¤ there exists a neighborhood U of x; such that for every x; z 2 U;

(F (x) +K (z)� y) \ (�K(z)) � f0g :

Furthermore, if we suppose that there exists a neighborhood U of x such that intK(x) 6= ; for all
x 2 U; then (x; y) is a local robust weakly e¢ cient point for F with respect to K i¤ there exists a
neighborhood V � U of x; such that for every x; z 2 V;

(F (x) +K (z)� y) \ (� intK(z)) = ;:

Proof. To prove this, we take a 2 (F (x) +K (z)� y) \ (�K(z)) ; so there exists k 2 K (z) such
that

a� k 2 (F (x)� y) \ (�K(z)�K (z)) � (F (x)� y) \ (�K(z)) � f0g ;

which gives us a = k 2 K (z) : It follows that a 2 K (z) \ (�K (z)) and as K (x) is pointed
for any x 2 X; we obtain that a = 0: The other implication simply follows from the inclusion
(F (x)� y) \ (�K(z)) � (F (x) +K (z)� y) \ (�K(z)). If one follows similar arguments as above
one gets the second equivalence. �

Example 2.8 If (x; y) is a local robust (weakly) e¢ cient point for F with respect to K; then (x; y)
is not necessarily a local robust (weakly) e¢ cient point for F +K with respect to K: For example,
we take X; Y and F as in Example 2.6 and K : X � Y ,

K(x) =

�
R2+; if x = 0;
cone conv f(�1; 0) ; (1; 1)g ; if x 2 [�1; 1] n f0g ;

where cone and conv denote the conic and the convex hulls, respectively. It is easy to see that
(0; (0; 0)) is a local robust e¢ cient point for F with respect to K: However, (0; (0; 0)) it is not a
local robust e¢ cient point for F + K with respect to K because for every neighborhood U of 0;
there exist 0 6= x 2 U; z = 0 such that (�1; 0) 2 �K (z) \ (F (x) +K (x)).

3 Tools of generalized di¤erentiation

In order to get optimality conditions for the notions introduced in De�nitions 2.1 and 2.4 we use
the constructions of generalized di¤erentiation developed by Mordukhovich and his collaborators.
Thus, following the book [15], we give some of the constructions that we use in this paper.

De�nition 3.1 (i) Let X be a normed vector space, S a nonempty subset of X, x 2 S and " � 0:
The set of "�normals to S at x is

bN"(S; x) :=

(
x� 2 X� j lim sup

u
S!x

x�(u� x)
ku� xk � "

)
; (3.1)

where u S! x means that u! x and u 2 S:
If " = 0; the elements in the right-hand side of (3.1) are called Fréchet normals and their

collection, denoted by bN(S; x); is the Fréchet normal cone to S at x:
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Let x 2 S: The basic (or limiting, or Mordukhovich) normal cone to S at x is

N(S; x) := fx� 2 X� j 9"n # 0; xn
S! x; x�n

w�! x�; x�n 2 bN"n(S; xn);8n 2 Ng:

(ii) Let f : X ! R, �nite at x 2 X: The Fréchet subdi¤erential of f at x is the set

b@f (x) := fx� 2 X� j (x�;�1) 2 bN(epi f; (x; f (x)))g
and the basic (or limiting, or Mordukhovich) subdi¤erential of f at x is

@f (x) := fx� 2 X� j (x�;�1) 2 N(epi f; (x; f (x)))g:

If f is convex, then both @f (x), b@f (x) do coincide with the classical Fenchel subdi¤erential. If
X is an Asplund space (i.e., a Banach space where every convex continuous function is generically
Fréchet di¤erentiable), and S is closed around x (i.e., there is a neighborhood V of x such that
S \ V is closed), the formula for the basic normal cone looks as follows:

N(S; x) = fx� 2 X� j 9xn
S! x; x�n

w�! x�; x�n 2 bN(S; xn);8n 2 Ng:
Also, in general, one has the inclusion b@f (x) � @f (x). A well known result is the next generalized
Fermat rule: if x is a local minimum point for f then 0 2 b@f (x) : Let A � X and B � Y be
nonempty sets: For an arbitrary point (a; b) 2 A � B we have that bN (A�B; (a; b)) = bN (A; a) �bN (B; b) and N (A�B; (a; b)) = N (A; a)�N (B; b) ; and for any x 2 A one has

b@d (�; A) (x) = bN (A; x) \DX� : (3.2)

If �A denotes the indicator function associated with the set A; i.e.,

�A (x) =

�
0; if x 2 A;
1; otherwise,

then b@�A (x) = bN (A; x) and @�A (x) = N (A; x) for any x 2 A:
Further, we recall the fuzzy sum rule and a composition rule for the Fréchet subdi¤erential (see

[15, Theorem 2.33] and [16, Theorem 3.7], respectively).

Theorem 3.2 Let X be an Asplund space and '1; '2 : X ! R[f+1g be such that '1 is Lipschitz
continuous around x 2 dom'1 \ dom'2 and '2 is lower semicontinuous around x: Then for any

 > 0 one has

b@ ('1 + '2) (x) �[nb@'1 (x1) + b@'2 (x2) j xi 2 x+ 
DX ; j'i (xi)� 'i (x)j � 
; i = 1; 2
o
+
DX� :

Proposition 3.3 Let f : X ! Y be a Lipschitz function and let ' : Y ! R. Let x 2 X and
suppose that ' is Fréchet di¤erentiable at f (x) : Then

b@ (' � f) (x) = b@ (r' (f (x)) � f) (x) :
In the following, we present two concepts of coderivatives for set-valued maps.
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De�nition 3.4 Let F : X � Y be a set-valued map and (x; y) 2 GrF: Then the Fréchet coderiva-
tive of F at (x; y) is the set-valued map bD�F (x; y) : Y � � X� given by

bD�F (x; y)(y�) := fx� 2 X� j (x�;�y�) 2 bN(GrF; (x; y))g:
Similarly, the normal coderivative of F at (x; y) is the set-valued map D�

NF (x; y) : Y
� � X� given

by
D�
NF (x; y)(y

�) := fx� 2 X� j (x�;�y�) 2 N(GrF; (x; y))g:

Next we recall a technical result (see [6, Lemma 4.9]).

Proposition 3.5 Let K : X � Y be a set-valued map with K (x) a convex cone for any x 2 X
and (x; y) 2 GrK:

(i) If bD�K(x; y)(y�) 6= ;; then y� 2 (K (x))� :
(ii) If X and Y are Asplund spaces, GrK is closed around (x; y), K is lower semicontinuous

at x (i.e., for every y 2 K (x) and every sequence (xn)! x; there exists a sequence (yn)! y with
(xn; yn) 2 GrK for every n) and D�

NK(x; y)(y
�) 6= ;; then y� 2 (K (x))� :

Further, we recall the Lipschitz-like property for set-valued maps and a version of coderivative
sum rules for mappings (see [15, Proposition 3.12]).

De�nition 3.6 Let F : X � Y be a set-valued map and (x; y) 2 GrF: The set-valued mapping F
is Lipschitz-like around (x; y) if there exist a constant M > 0 and some neighborhoods U 2 V(x);
V 2 V(y) such that, for every x; u 2 U;

F (x) \ V � F (u) +M kx� ukDY :

Proposition 3.7 Let X; Y be Asplund spaces, S � X be a closed set and the set-valued map
F : X � Y be closed around (x; y) 2 GrF: If F is Lipschitz-like around (x; y); then for every
y� 2 Y �; we have the inclusion

D�
NFS(x; y)(y

�) � D�
NF (x; y)(y

�) +N (S; x) ;

where FS (x) := F (x) ; if x 2 S and FS(x) := ;; if x =2 S:

Moreover, we need as well a calculus rule for the Fréchet normal cone of the intersection of a
�nite number of sets. Given the closed subsets C1; :::; Ck of a normed vector space X; one says that

they are allied at x 2 C1 \ ::: \ Ck whenever (xin)
Ci! x; x�in 2 bN(Ci; xin); i = 1; k; the relation

(x�1n+ :::+ x
�
kn)! 0 implies (x�in)! 0 for every i = 1; k. The concept of alliedness was introduced

by Penot in [19]. By Theorem 4.1 from [4], the alliedness of the subsets C1; :::; Ck implies that
there exists r > 0 such that, for every " > 0 and every x 2 [C1 \ ::: \ Ck] \ B(x; r), there exist
xi 2 Ci \B(x; "), i = 1; k such thatbN(C1 \ ::: \ Ck; x) � bN(C1; x1) + :::+ bN(Ck; xk) + "DX� :

Now, we are able to separately study, in the next sections, the notions de�ned in Section 2.
However, we will see that the treatment of both cases has several common points (see the last
section).
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4 Optimality conditions for sharp nondominated points

Let F; K : X � Y be the set-valued maps considered in Section 2, that is the objective mapping
and the ordering mapping, respectively. We work with the following sets

C1 := f(x; y; z) 2 X � Y � Y j y 2 F (x)g ;
C2 := f(x; y; z) 2 X � Y � Y j z 2 K (x)g :

With this notation, we formulate our �rst result, in which we obtained necessary optimality condi-
tions in terms of Fréchet coderivatives for the notion of sharp e¢ ciency, as follows.

Theorem 4.1 Let X; Y be Asplund spaces, F; K : X � Y be two set-valued maps with (x; y) 2
GrF and (x; 0) 2 GrK such that GrF , GrK are closed around (x; y) and (x; 0), respectively.
Assume that the following assumptions are satis�ed:

(i) (x; y) is a weak  -sharp local nondominated point (with the constant � > 0) for the problem
(P ) ;

(ii) the sets C1 and C2 are allied at (x; y; 0) ;
(iii)  is Fréchet di¤erentiable at 0 with r (0) > 0:
Then for every t� 2 �r (0)DX� \ bN (W;x) ; and for every " > 0; there exist (x1; y1) 2

GrF \ (B (x; ")�B (y; ")) ; (x2; y2) 2 GrK \ (B (x; ")�B (0; ")) ; y� 2 DY � such that

t� 2 bD�F (x1; y1) (y
� + "BY �) + bD�K (x2; y2) (y

� + "BY �) + "BX� :

Proof. Using De�nition 2.1, there exist � > 0 and a neighborhood U of x such that for every
x 2 U; y 2 F (x) ; z 2 K (x) one has

� (d (x;W )) � d (y � y;�K (x)) � ky � y + zk :

Whence, (x; y; 0) is a minimum point for the function

X � Y � Y 3 (x; y; z) 7! ky � y + zk � � (d (x;W )) 2 R

on (U � Y � Y ) \ (C1 \ C2) : Using the in�nite penalization, we obtain that (x; y; 0) is a local
minimum point (without constraints) for the function g : X � Y � Y ! R given by

g (x; y; z) := ky � y + zk � � (d (x;W )) + �C1\C2 (x; y; z) :

It results, from the generalized Fermat rule, that

(0; 0; 0) 2 b@g (x; y; 0) :
Let g1 : X�Y�Y ! R and g2 : X�Y�Y ! R be the functions given by g1 (x; y; z) := � (d (x;W ))
and g2 (x; y; z) := ky � y + zk+ �C1\C2 (x; y; z) ; respectively: Using relation (3.2) and Proposition
3.3, one observes that

b@g1 (x; y; 0) = h�r (0)DX� \ bN (W;x)i� f0g � f0g � f(0; 0; 0)g ;
so b@g1 (x; y; 0) 6= ;: It follows from [16, Theorem 3.1] that

(0; 0; 0) 2
\

t�2�r (0)DX�\ bN(W;x)
hb@g2 (x; y; 0)� (t�; 0; 0)i : (4.1)
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Taking into account that g2 is the sum between a Lipschitz function and a lower semicontinuous
one around (x; y; 0), we can apply the fuzzy calculus rule for the Fréchet subdi¤erential. Thus, for
every " > 0; there exist

(x1; y1; z1) 2 B
�
x;
"

2

�
�B

�
y;
"

2

�
�B

�
0;
"

2

�
and

(x2; y2; z2) 2
h
B
�
x;
"

2

�
�B

�
y;
"

2

�
�B

�
0;
"

2

�i
\ (C1 \ C2)

such that

b@g2 (x; y; 0) � f0g � @ k�+ � � yk (y1; z1) + b@�C1\C2 (x2; y2; z2) + "

2
(BX� �BY � �BY �) : (4.2)

Notice that the closedness assumption of graphs of F and K implies that C1 and C2 are closed
around (x; y; 0) : Using the hypothesis (ii) we obtain that

b@�C1\C2 (x2; y2; z2) = bN (C1 \ C2; (x2; y2; z2))
� bN (C1; (x21; y21; z21)) + bN (C2; (x22; y22; z22)) + "

2
(DX� �DY � �DY �) ; (4.3)

where
(x21; y21; z21) 2

h
B
�
x2;

"

2

�
�B

�
y2;

"

2

�
�B

�
z2;

"

2

�i
\ C1

and
(x22; y22; z22) 2

h
B
�
x2;

"

2

�
�B

�
y2;

"

2

�
�B

�
z2;

"

2

�i
\ C2:

Now, de�ning the linear operator A : Y � Y ! Y by A (y; z) := y + z, the function (y; z) 7!
ky + z � yk can be expressed as the composition between the convex function y 7! ky � yk and A:
Applying [20, Theorem 2.8.6], we have that

@ k�+ � � yk (y1; z1) = A� (@ k� � yk) (y1 + z1) ;

where A� : Y � ! Y � � Y � denotes the adjoint of A. As A� (y�) = (y�; y�) for every y� 2 Y �; we
obtain that

@ k�+ � � yk (y1; z1) � f(y�; y�) j y� 2 DY �g :

Fix t� 2 �r (0)DX� \ bN (W;x) : Thus, from (4.1), (4.2) and (4.3) we obtain that there exist
y� 2 DY � ;

(x�1;�y�1; 0) 2 bN (C1; (x21; y21; z21)), x�1 2 bD�F (x21; y21) (y
�
1) ;

(x�2; 0;�z�2) 2 bN (C2; (x22; y22; z22)), x�2 2 bD�K (x22; z22) (z
�
2) ;

such that

t� 2 x�1 + x�2 + "DX� ;

y�1 2 y� + "DY � ;

z�2 2 y� + "DY � :

Since (x21; y21) 2 GrF \ [B (x; ")�B (y; ")] and (x22; z22) 2 GrK \ [B (x; ")�B (0; ")] ; we have
the conclusion. �
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Remark 4.2 Taking into account the special form of C1 and C2; the alliedness at (x; y; 0) means

that for any sequences (xn; yn)
GrF! (x; y), (un; vn)

GrK! (x; 0) ; and every x�n 2 bD�F (xn; yn) (y�n) ;
u�n 2 bD�K (un; vn) (v�n) ; (x

�
n + u

�
n) ! 0; y�n ! 0; v�n ! 0 imply that x�n ! 0 and u�n ! 0:

According to [15, Theorem 1.43], the sets C1 and C2 are allied at (x; y; 0) if F is Lipschitz-like
around (x; y) 2 GrF or K is Lipschitz-like around (x; 0) 2 GrK:

Remark 4.3 Notice that it is possible to obtain optimality conditions by considering, as usual,
the epigraphical set-valued map associated to F; but in this case of variable ordering structure we
consider that this approach is not appropriate since it would lead to optimality conditions in terms
of coderivative of the sum F +K; which in this situation is more complicated than the sum of the
coderivatives of F and K; respectively. So, in this sense the result above and the following ones
are, in our opinion, adapted to this speci�c situation for which the alliedness condition is essential.

To obtain optimality conditions in terms of Mordukhovich coderivatives we use the fact that the
closed unit ball of X� is weak� sequentially compact, if X is an Asplund space (see [15, Proposition
1.123]).

Theorem 4.4 Let X; Y be Asplund spaces, F; K : X � Y be two set-valued maps with (x; y) 2
GrF and (x; 0) 2 GrK such that GrF , GrK are closed around (x; y) and (x; 0), respectively.
Assume that the following assumptions are satis�ed:

(i) (x; y) is a weak  -sharp local nondominated point (with the constant � > 0) for the problem
(P );

(ii) the sets C1 and C2 are allied at (x; y; 0) ;
(iii)  is Fréchet di¤erentiable at 0 with r (0) > 0;
(iv) K is lower semicontinuous at x:
Then for every t� 2 �r (0)DX� \ bN (W;x) ; there exists y� 2 DY � \ (K (x))� such that

t� 2 D�
NF (x; y) (y

�) +D�
NK (x; 0) (y

�) : (4.4)

Proof. Let t� 2 �r (0)DX� \ bN (W;x) : It follows from the previous theorem, that there exist

(xn; yn)
GrF! (x; y) ; (un; vn)

GrK! (x; 0) ; (y�n) � DY � ; (t
�
n) ; (v

�
n) ! 0 and (x�n) ; (u

�
n) � X� such

that x�n 2 bD�F (xn; yn) (y�n + t
�
n) ; u

�
n 2 bD�K (un; vn) (y�n + v

�
n) for every positive integer n and

x�n + u�n ! t�: Since, (y�n) is bounded, we can suppose, without loosing the generality, that it

converges weakly� to an element y�: Therefore y�n + v�n; y
�
n + t�n

w�! y�; so (y�n + v
�
n) ; (y

�
n + t

�
n) are

bounded. Further, we want to prove that the sequences (x�n) and (u
�
n) are bounded. As x

�
n+u

�
n ! t�;

it is su¢ cient to prove that one of these two sequences is bounded. Suppose by contradiction that
both sequences are unbounded. It follows that for every n; there is kn su¢ ciently large such that

n < min
�

x�kn

 ;

u�kn

	 : (4.5)

For simplicity we denote the subsequences
�
x�kn
�
,
�
u�kn
�
by (x�n) ; (u

�
n) ; respectively. Now, using

the positive homogeneity of the Fréchet coderivatives, we obtain that

1

n
x�n 2 bD�F (xn; yn)

�
1

n
(y�n + t

�
n)

�
;

1

n
u�n 2 bD�K (un; vn)

�
1

n
(y�n + v

�
n)

�
:
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As 1
n (y

�
n + t

�
n) ! 0; 1n (y

�
n + v

�
n) ! 0 and 1

nx
�
n +

1
nu

�
n ! 0; we have from the alliedness of the sets

C1, C2 that 1
nx

�
n ! 0 and 1

nu
�
n ! 0; which is in contradiction with relation (4.5). Consequently,

we obtain that (x�n) ; (u
�
n) are bounded, whence there exist x

�; u� 2 X� such that x�n
w�! x� and

u�n
w�! u� (without relabelling). Using again that x�n + u�n ! t�, we deduce that t� = x� + u�: It

follows that x� 2 D�
NF (x; y) (y

�) ; u� 2 D�
NK (x; 0) (y

�) ; with y� 2 DY � . Now, using Proposition
3.5 (ii) we obtain that y� 2 (K (x))� ; which gives the conclusion of the theorem. �

Remark 4.5 As we can see, in the above theorem we do not know if the multiplier y� is nonzero,
so we get a result of Fritz John type.

In the next result we suppose that the set-valued map K is constantly equal to a closed convex
proper cone Q. Notice that if we suppose that the epigraphical set-valued map associated to F is
closed around (x; y) 2 GrF , using Remark 2.2 (ii), we obtain Theorem 4.1 from [5].

Corollary 4.6 Let X; Y be Asplund spaces, F : X � Y be a set-valued map with GrF closed
around (x; y) 2 GrF and Q be a closed convex proper cone: Assume that (x; y) is a weak  -sharp
local nondominated point (with the constant � > 0) for the problem (P ),  is Fréchet di¤erentiable
at 0 with r (0) > 0: Then for every t� 2 �r (0)DX� \ bN (W;x) ; there exists y� 2 DY � \ Q�
such that

t� 2 D�
NF (x; y) (y

�) :

Proof. Consider the set-valued map K : X � Y such that K (x) := Q for all x 2 X: The sets

C1, C2 are allied at (x; y; 0) if for any sequences (xn; yn)
GrF! (x; y) ; (un; vn)

GrK! (x; 0) and every
x�n 2 bD�F (xn; yn) (y�n) ; u

�
n 2 bD�K (un; vn) (v�n) such that (y

�
n) ! 0; (v�n) ! 0; (x�n + u

�
n) ! 0 we

get x�n ! 0 and u�n ! 0: As bD�K (un; vn) (v�n) = f0g ; the alliedness of C1 and C2 at (x; y; 0) is
proved. Also, it is easy to see that K is lower semicontinuous at x and D�

NK(x; 0)(y
�) = f0g: So,

as all the hypotheses from the previous theorem are satis�ed, we get the conclusion. �

Of course, in Theorem 4.4, if 0 2 D�
NK (x; 0) (y

�) ; then it becomes a consequence of Corollary
4.6.

Now, in order to get a Karush-Kuhn-Tucker type result, we restrict ourselves to the following
particular case: we consider, instead of the set-valued map F; a single-valued map, denoted f; and
instead of weak sharp e¢ ciency a genuine sharp e¢ ciency, that is W = fxg : We denote now the
problem (PS) by ( ePS) in order to mark the announced di¤erences.

In order to get optimality conditions for the sharp e¢ ciency notion, we use the Gerstewitz�s
(Tammer�s) scalarizing functional. Thus, in the next lemma we collect from [1, Theorem 2.3.1,
Corollary 2.3.5] and [7, Lemma 2.4] the properties of this nonlinear scalarization function which we
need in the sequel.

Lemma 4.7 Let K � Y be a closed convex cone with nonempty interior. Then for every e 2 intK
the functional se;K : Y ! R given by

se;K(y) := inff� 2 R j �e 2 y +Kg (4.6)

is convex, continuous and for every � 2 R

fy 2 Y j se;K(y) < �g = �e� intK; (4.7)

fy 2 Y j se;K(y) � �g = �e�K: (4.8)
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Moreover, se;K is sublinear, for every u 2 Y; @se;K(u) is nonempty and

@se;K(u) = fv� 2 K� j v�(e) = 1; v�(u) = se;K(u)g;

where @ denotes the Fenchel subdi¤erential. In addition, se;K is (d (e;bdK))�1-Lipschitzian and
for every u 2 Y and v� 2 @se;K(u) one has

kek�1 � kv�k � (d (e;bdK))�1 :

Next, we prove a result which show that the above function is appropriate to investigate sharp
nondominated points.

Lemma 4.8 Let (x; f (x)) be a  -sharp local nondominated point (with the neighborhood U and

with the constant � > 0) for the problem
� ePS� and let K :=

\
x2U

K (x) : If intK 6= ;; then for every

e 2 intK; there exists � > 0 such that for every x 2 U \ S and z 2 K (x) one has

se;K (z + f (x)� f (x)) � � (kx� xk) : (4.9)

Proof. By De�nition 2.1 applied for
� ePS� (that is, F := f and W = fxg), we get that there exist

� > 0 and a neighborhood U of x such that for every x 2 U \ S one has

d (f (x)� f (x) ;�K (x)) � � (kx� xk) : (4.10)

Take e 2 intK with kek = 1 and �x x 2 U \ S and z 2 K (x) : There are two possible cases.
First, if x = x then  (kx� xk) = 0 and se;K (z + f (x)� f (x)) = se;K (z) : Now, if z = 0 then

z =2 � intK: Next, we assume z 2 K (x) n f0g : As K(x) is pointed and z 2 K (x) ; we obtain that
z =2 �K (x) ; so z =2 � intK. Using relation (4.7), we get that se;K (z) � 0; i.e., the conclusion for
any � > 0:

In the second case we suppose that x 6= x: We want to prove that for any 
 2 (0; �) one has

z + f (x)� f (x) =2 
 (kx� xk) e� intK:

Suppose that there exists 
 2 (0; �) such that z + f (x) � f (x) 2 
 (kx� xk) e � intK. Since
z 2 K (x) ; we obtain that f (x) � f (x) 2 
 (kx� xk) e � intK (x) : Then, using the fact that
 (kx� xk) > 0; we have

d (f (x)� f (x) ;�K (x)) � k
 (kx� xk) ek < � (kx� xk) ;

which is a contradiction with the inequality (4.10). Using again relation (4.7), we obtain that
se;K (z + f (x)� f (x)) � 
 (kx� xk).

Finally, take e1 2 int K arbitrarily. It�s easy to see that se1;K (�) =
1

ke1kse;K (�) ; where e =
e1
ke1k :

It follows that we have the conclusion in every of the previous cases for x and z �xed before.
Consequently, as the constant obtained does not depend of x or z, we obtain the conclusion. �

In the following we consider as well, besides the set C2; the set

C3 := f(x; y; z) 2 X � Y � Y j y = f (x)g :

12



Theorem 4.9 Let X; Y be Asplund spaces, f : X ! Y be a function continuous around x with
y = f (x) and K : X � Y be a set-valued map such that GrK is closed around (x; 0) 2 GrK.
Assume that the following assumptions are satis�ed:

(i) (x; y) is a  -sharp local nondominated point (with the neighborhood U) for the problem
� eP�;

(ii) the sets C2 and C3 are allied at (x; y; 0) ;
(iii)  is Fréchet di¤erentiable at 0 with r (0) > 0 and intK 6= ;, where K =

\
x2U

K (x) :

Then for e 2 intK; there exists � > 0 such that for every t� 2 �r (0)DX� ; and every " > 0,
there exist x1 2 B (x; ") ; (x2; y2) 2 GrK \ (B (x; ")�B (0; ")) ; y 2 B (0; ") ; y� 2 @se;K (y) with

t� 2 bD�f (x1) (y
� + "BY �) + bD�K (x2; y2) (y

� + "BY �) + "BX� :

Proof. Using Lemma 4.8, we obtain that for every e 2 intK; there exist � > 0 and a neighborhood
U of x such that for every x 2 U; y = f (x) ; z 2 K (x)

se;K (y + z � y) � � (kx� xk) :

Whence, (x; y; 0) is a minimum point for the function

X � Y � Y 3 (x; y; z) 7! se;K (y + z � y)� � (kx� xk) 2 R

on (U � Y � Y ) \ (C2 \ C3) : In the following, we can use the same technique as in the proof of
Theorem 4.1, with se;K (y + z � y) instead of ky � y + zk, with the obvious modi�cations. The
conclusion follows. �

Theorem 4.10 Let X; Y be Asplund spaces, f : X ! Y be a function continuous around x with
y = f (x) and K : X � Y be a set-valued map such that GrK is closed around (x; 0) 2 GrK.
Assume that the following assumptions are satis�ed:

(i) (x; y) is a  -sharp local nondominated point (with the neighborhood U) for the problem
� eP� ;

(ii) the sets C2 and C3 are allied at (x; y; 0) ;
(iii)  is Fréchet di¤erentiable at 0 with r (0) > 0 and intK 6= ;, where K =

\
x2U

K (x) ;

Then for e 2 intK; there exists � > 0 such that for every t� 2 �r (0)DX� there exists y� 2 K�

with y� (e) = 1 and
t� 2 D�

Nf (x) (y
�) +D�

NK (x; 0) (y
�) : (4.11)

Proof. As all the assumptions from previous theorem are satis�ed, it follows that for every e 2
intK; there exists � > 0; for any t� 2 �r (0)DX� ; there exist (xn) ! x; (un; vn)

GrK! (x; 0) ;
(yn)! 0; (y�n) � @se;K (yn) ; (t

�
n) ; (v

�
n)! 0 and (x�n) ; (u

�
n) � X� such that x�n 2 bD�f (xn) (y�n + t

�
n) ;

u�n 2 bD�K (un; vn) (y�n + v
�
n) for every positive integer n and x

�
n + u�n ! t�: As y�n 2 @se;K (yn) ;

we obtain from Lemma 4.7 that kek�1 � ky�nk �
�
d
�
e;bdK

���1
and (y�n) � K

�
. Since, (y�n) is

bounded, we can suppose, without loosing the generality, that it converges weakly� to an element

y�. Therefore y�n + v�n; y
�
n + t�n

w�! y�; so (y�n + v
�
n) ; (y

�
n + t

�
n) are bounded. As in Theorem 4.4, we

obtain that there exist x�; u� such that t� = x� + u�: As K
�
is weakly-star closed, (y�n) � K

�
and

y�n
w�! y�; we get that y� 2 K

�
. Using again Lemma 4.7 and the fact that @se;K is w�-closed, we

have that y� (e) = 1 and the conclusion follows: �
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Now, we brie�y consider the case of problem
� ePS�. Notice that a similar result for the case

where the objective is a set-valued map can be done in the same way.

Theorem 4.11 Let X; Y be Asplund spaces, f : X ! Y be a function continuous around x with
y = f (x) and K : X � Y be a set-valued map such that GrK is closed around (x; 0) 2 GrK:
Suppose that (x; y) is a  -sharp local nondominated point (with the neighborhood U) for the problem� ePS� ;  is Fréchet di¤erentiable at 0, r (0) > 0; S is closed and intK 6= ;, where K :=

\
x2U

K (x).

If f is Lipschitz around x or K is Lipschitz-like around (x; 0) ; then for e 2 intK; there exists � > 0
such that for every t� 2 �r (0)DX� there exists y� 2 K�

with y� (e) = 1 and

t� 2 D�
Nf (x) (y

�) +D�
NK (x; 0) (y

�) +N (S; x) :

Proof. Suppose that f is Lipschitz around x and take e 2 intK: The conclusion follows analogously
as in Theorems 4.9 and 4.10. Indeed, we use again Lemma 4.8 and the in�nite penalization to obtain
that there is � > 0 such that (x; y; 0) is a local minimum point (without constraints) for the function
g : X � Y � Y ! R given by

g (x; y; z) := se;K (y + z � y)� � (d (x;W )) + �C2\CS3 (x; y; z) ;

where CS3 := f(x; y; z) 2 S � Y � Y j y = f (x)g : According to Remark 4.2, the assumption (ii)
from Theorem 4.10 adapted to this case is satis�ed. As in the proof of the above mentioned
theorems, we get that for every t� 2 �r (0)DX� ; there exists y� 2 K�

such that y� (e) = 1 and

t� 2 D�
NfS (x) (y

�) +D�
NK (x; 0) (y

�) ;

where fS (x) := f (x) ; if x 2 S and fS(x) := ;; if x =2 S: By Proposition 3.7, taking F := f; we get
the conclusion. It is easy to see that C2\CS3 = CS2 \C3; where CS2 := f(x; y; z) 2 S � Y � Y j z 2 K (x)g :
So, if we suppose that K is Lipschitz-like around (x; 0) ; the proof is the same. �

Remark 4.12 Analogously to Corollary 4.6, if in the previous theorem the set-valued map K is
constantly equal to a closed convex proper cone Q, we obtain a particular case of Theorem 3.4 of
[5]:

5 Optimality conditions for robust e¢ cient points

In this section we get some optimality conditions for the concepts introduced in De�nition 2.4 in
terms of Fréchet and Mordukhovich coderivatives of the set-valued maps F and K; respectively. In
fact, we deal only with the harder case which is the one of local robust e¢ ciency (De�nition 2.4
(i)). Of course, the results we get hold as well in the case of local robust weak e¢ ciency (De�nition
2.4 (ii)), when this notion can be de�ned.

Before we do this we de�ne a notion of openness for a sum of set-valued maps which is weaker
than the classical one. More precisely, we say that F + K is weakly open at (x; y) if for every
neighborhood U of x; there exists a neighborhood V of y such that V � F (U) + K (U). As in
general (F +K) (U) � F (U)+K (U) ; if F +K is open in the standard sense at (x; y) ; then F +K
is also weakly open at the same point. However, the reverse implication is not true. In this sense,
we give the following example.
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Example 5.1 Let F; K : R� R;

F (x) =

�
x; if x 2 Q;
;; if x =2 Q;

and
K(x) = x; 8x 2 R,

where Q denotes the set of rational numbers. It is easy to see that F + K is not open in the
standard sense at (0; 0) ; but F +K is weakly open at (0; 0) :

The �rst result of this section is one of weak openness for F + K: The method of proof we
employ here is well known and can be traced back to [18]. However, due to the speci�c di¤erences
we meet in the case we study, we �ll all the technical details of this proof.

Theorem 5.2 Let X; Y be Asplund spaces, F; K : X � Y set-valued maps, (x; y) 2 GrF and
(x; 0) 2 GrK: Assume that the following assumptions are satis�ed:

(i) GrF and GrK are closed around (x; y) and (x; 0) ; respectively;
(ii) there exist c > 0; r1 > 0; r2 > 0; s1 > 0; s2 > 0 such that for every (x1; y1) 2 GrF \

(B (x; r1)�B (y; s1)) ; (x2; y2) 2 GrK \ (B (x; r2)�B (0; s2)) ; y� 2 SY � ; z
�
1 ; z

�
2 2 cBY � ; x

�
1 2bD�F (x1; y1)(y� + z�1); x

�
2 2 bD�K(x2; y2)(y� + z�2) we have

c k2y� + z�1 + z�2k � kx�1 + x�2k :

Then for every a 2 (0; c) ; there exists " > 0 such that, for every � 2 (0; "]

B (y; �a) � F (B (x; �)) +K (B (x; �)) ;

and, consequently, F +K is weakly open at (x; y) :

Proof. Fix a 2 (0; c) and choose b 2 (0; 1) such that a
a+1 < b < c

c+1 : There exists " > 0 such that
the following are true:

b�1a" < min fr1; r2; s1; s2g ;
a

a+ 1
< b+ " <

c

c+ 1
;

GrF \ clW is closed, where W = B
�
x; b�1a"

�
�B

�
y; b�1a"

�
;

GrK \ clV is closed, where V = B
�
x; b�1a"

�
�B

�
0; b�1a"

�
:

Fix � 2 (0; "] and take v 2 B (y; �a). We endow the space X � Y � X � Y with the sum norm
and de�ne the function f : [GrF \ clW ] � [GrK \ clV ] ! R, f (x; y; x0; y0) := ky + y0 � vk : As
the set [GrF \ clW ]� [GrK \ clV ] is closed, we can apply the Ekeland Variational Principle for
f and (x; y; x; 0) 2 dom f: So, there exists (xb; yb; x0b; y0b) 2 [GrF \ clW ]� [GrK \ clV ] such that

kyb + y0b � vk � ky � vk � b (kx� xbk+ ky � ybk+ kx� x0bk+ ky0bk) (5.1)

and

kyb + y0b � vk � ky + y0 � vk+ b (kx� xbk+ ky � ybk+ kx0 � x0bk+ ky0 � y0bk) ; (5.2)

8 (x; y; x0; y0) 2 [GrF \ clW ]� [GrK \ clV ] :
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From (5.1) we obtain that

kx� xbk+ ky � ybk+ kx� x0bk+ ky0bk � b�1 ky � vk < b�1�a � b�1"a;

whence (xb; yb; x0b; y0b) 2W � V: Again from (5.1), if v = yb + y0b 2 B (y; a�) we obtain that

b kx� xbk � ky � vk � b (ky � ybk+ kx� x0bk+ ky0bk)
� ky � vk � b ky � yb � y0bk = (1� b) ky � vk
� (1� b) a� < b�

and analogously
b kx� x0bk < b�;

therefore xb; x0b 2 B (x; �) : Thus, v = yb + y0b 2 F (xb) +K (x0b) � F (B (x; �)) +K (B (x; �)) :
So, if we prove that v is the only possible solution, we get the conclusion. For this, we sup-
pose that v 6= yb + y0b and we de�ne the function h : X � Y � X � Y ! R, h (x; y; x0; y0) :=
ky + y0 � vk+b (kx� xbk+ ky � ybk+ kx0 � x0bk+ ky0 � y0bk) : From relation (5.2) we obtain that
(xb; yb; x0b; y0b) is a minimum point for h on [GrF \ clW ]� [GrK \ clV ] : Then (xb; yb; x0b; y0b) is
a global minimum point for h+ �[GrF\clW ]�[GrK\clV ]: By means of the generalized Fermat rule, we
have that

(0; 0; 0; 0) 2 b@ �h (�; �; �; �) + �[GrF\clW ]�[GrK\clV ] (�; �; �; �)
�
(xb; yb; x0b; y0b) :

Since (xb; yb; x0b; y0b) 2W � V , we can choose 
 2 (0; �) such that

D (xb; 
)�D (yb; 
)�D (x0b; 
)�D (y0b; 
) �W � V

and
v =2 D (yb + y0b; 2
) :

Taking into account that h is Lipschitz and �[GrF\clW ]�[GrK\clV ] is lower semicontinuous, we can
apply the fuzzy calculus rule for the Fréchet subdi¤erential (Theorem 3.2). Thus, it follows that
there exist�

x1
 ; y
1

 ; x

1
0
 ; y

1
0


�
2 D (xb; 
)�D (yb; 
)�D (x0b; 
)�D (y0b; 
) ;�

x2
 ; y
2

 ; x

2
0
 ; y

2
0


�
2 [GrF \ (D (xb; 
)�D (yb; 
))]� [GrK \ (D (x0b; 
)�D (y0b; 
))]

such that

(0; 0; 0; 0) 2 b@h �x1
 ; y1
 ; x10
 ; y10
�+ b@�[GrF\W ]�[GrK\V ]
�
x2
 ; y

2

 ; x

2
0
 ; y

2
0


�
(5.3)

+ 
 (DX� �DY � �DX� �DY �) :

Since
�
x2
 ; y

2

 ; x

2
0
 ; y

2
0


�
2 [GrF \W ]� [GrK \ V ] we have that

b@�[GrF\W ]�[GrK\V ]
�
x2
 ; y

2

 ; x

2
0
 ; y

2
0


�
= bN �GrF; �x2
 ; y2
��� bN �GrK; �x20
 ; y20
�� :

As h is the sum of �ve convex functions, the Fréchet subdi¤erential b@h coincides with the sum of
the Fenchel subdi¤erentials.
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Now, as in the proof of Theorem 4.9, using the same operator A : Y � Y ! Y de�ned by
A (y; z) := y + z; in composition with the convex function y 7! ky � vk we have that

@ k�+ � � vk
�
y1
 ; y

1
0


�
= A� (@ k� � vk)

�
y1
 + y

1
0


�
;

where A� : Y � ! Y � � Y � denotes the adjoint of A. Remarking also that v 6= y1
 + y10
 2
D (yb + y0b; 2
) and as A� (y�) = (y�; y�) for every y� 2 Y � we obtain that

@ k�+ � � vk
�
y1
 ; y

1
0


�
=
�
(y�; y�) j y� 2 SY � ; y�

�
y1
 + y

1
0
 � v

�
=


y1
 + y10
 � v

	 :

Consequently, using (5.3) we have that

(0; 0; 0; 0) 2 f(0; y�; 0; y�) j y� 2 SY �g+ b (DX� � f0g � f0g � f0g) + b (f0g �DY � � f0g � f0g)
+ b (f0g � f0g �DX� � f0g) + b (f0g � f0g � f0g �DY �)

+ bN �GrF; �x2
 ; y2
��� bN �GrK; �x20
 ; y20
��+ 
 (DX� �DY � �DX� �DY �)

= (b+ 
) (DX� �DY � �DX� �DY �) + f(0; y�; 0; y�) j y� 2 SY �g
+ bN �GrF; �x2
 ; y2
��� bN �GrK; �x20
 ; y20
�� :

It follows that there exist y� 2 SY � ; (ex�1; ey�1; ex�2; ey�2) 2 DX� �DY � �DX� �DY � such that

(� (b+ �) ex�1;�y� � (b+ �) ey�1) 2 bN �GrF; �x2
 ; y2
�� ;
(� (b+ �) ex�2;�y� � (b+ �) ey�2) 2 bN �GrK; �x20
 ; y20
��

i.e.,

� (b+ �) ex�1 2 bD�F
�
x2
 ; y

2



�
(y� + (b+ �) ey�1) ;

� (b+ �) ex�2 2 bD�K
�
x20
 ; y

2
0


�
(y� + (b+ �) ey�2) :

Using the hypothesis (ii) we obtain

c k2y� + (b+ �) (ey�1 + ey�2)k � (b+ �) kex�1 + ex�2k � 2 (b+ �) :
But

c k2y� + (b+ �) (ey�1 + ey�2)k � c (k2y�k � (b+ �) key�1 + ey�2k) � 2c (1� (b+ �)) ;
so we have

c (1� (b+ �)) � b+ �:

This is in contradiction to
b+ � � b+ " <

c

c+ 1
:

The proof is complete. �

Remark 5.3 Observe that in the previous theorem we do not require the property of alliedness like
in [6, Theorem 4.6] and [17, Theorem 4.2], but our conclusion is weaker.

In the following lemma, we prove the incompatibility between weakly openness and the opti-
mality notion from De�nition 2.4. In general, it is known from the scalar case that a mapping
cannot be open at an extremum point. This remark was extended and used in generalized settings
in several recent works: see, e.g., [4], [13] and the references therein.

In our speci�c situation, this can be written as in the following lemma.
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Lemma 5.4 Suppose that there exists a neighborhood U of x such that
\
x2U

K(x) 6= f0g : If (x; y) 2

GrF is a local robust e¢ cient point for F with respect to K; then there exists a neighborhood W of
x such that for every neighborhood V of y

V 6� F (W ) +K (W ) ;

i.e., F +K is not weakly open at (x; y) :

Proof. Using Lemma 2.7, we obtain that there is a neighborhood U1 of x such that, for every x;
z 2 U1;

(F (x) +K (z)� y) \ (�K(z)) � f0g : (5.4)

Take W = U \ U1: If the conclusion does not hold, then there exists V; a neighborhood of y; such
that V � F (W ) +K (W ). Let y 2 V . So, there exist z1; z2 2 W such that y 2 F (z1) +K (z2) :
From (5.4) it follows that y � y =2 �K (z2) or y � y = 0 i.e.,

y � y 2 f0g [ (Y n �K (z2)) � f0g [
 
Y n

\
x2U

�K (x)
!
:

But y was chosen arbitrarily in V; so V � y � f0g [
 
Y n

\
x2U

�K (x)
!
. It is easy to see that

V � y is an absorbing set, i.e., for every v 2 Y; there is 
 > 0 such that for every � 2 [�
; 
] we

have �v 2 V � y: So, as the set f0g[
 
Y n

\
x2U

�K (x)
!
is a cone, we deduce that Y = f0g[ 

Y n
\
x2U

�K (x)
!
; which contradicts the fact that

\
x2U

K(x) 6= f0g : Thus we have the conclusion.

�

Putting together the last lemma and Theorem 5.2, we obtain the following result.

Theorem 5.5 Let X; Y be Asplund spaces, F; K : X � Y set-valued maps with GrF and GrK
closed around (x; y) 2 GrF and (x; 0) 2 GrK; respectively: Suppose that there exists a neighborhood
U of x such that K 6= f0g ; where K :=

\
x2U

K(x): If (x; y) is a local robust e¢ cient point for

F with respect to K, then for every " > 0; there exist (x"; y") 2 GrF \ (B (x; ")�B (y; ")) ;
(ex"; ey") 2 GrK \ (B (x; ")�B (0; ")) ; y�" 2 SY � ; z�" ; ez�" 2 "BY � such that

0 2 bD�F (x"; y")(y
�
" + z

�
" ) +

bD�K(ex"; ey")(y�" + ez�" ) + "BX� :

Proof. Using Lemma 5.4 and taking into account the hypotheses, it follows that the second
assumption of Theorem 5.2 is not satis�ed. Thus, for every n 2 N n f0g ; there exist (xn; yn) 2
GrF \

�
B
�
x; 14n

�
�B

�
y; 14n

��
; (exn; eyn) 2 GrK \

�
B
�
x; 14n

�
�B

�
0; 14n

��
; (y�n) � SY � ; z

�
n; ez�n 2

1
4nBY � ; x

�
n 2 bD�F (xn; yn)(y�n + z

�
n); ex�n 2 bD�K(exn; eyn)(y�n + ez�n) such that

kx�n + ex�nk < 1

4n
k2y�n + z�n + ez�nk < 4n+ 1

8n2
<
1

n
:

Since, for every " > 0 we can �nd n 2 N n f0g with 1
n < "; we obtain the conclusion: �
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To obtain optimality conditions in terms of Mordukhovich coderivatives, we need a sequentially
normally boundedness condition. We say that a set-valued map H : X � Y is sequentially

normally bounded ((SNB), for short) at (x; y) 2 GrH if for every sequences (xn; yn)
GrH! (x; y) ;

(y�n) bounded and x
�
n 2 bD�H (xn; yn) (y�n) imply that (x

�
n) is bounded too. Also, in order to get

nontrivial Lagrange multipliers for the objective we need a generalized compactness hypothesis. Let
C � Y be a closed set around c 2 C. One says that C is sequentially normally compact ((SNC),

for short) at c if for any cn
C! c; c�n

w�! 0; c�n 2 bN (C; cn) ; we have c�n ! 0: When C is a proper
closed convex cone, the previous property at 0 is given as follows:h

(c�n) � C�; c�n
w�! 0

i
) c�n ! 0:

Theorem 5.6 Suppose that the same hypotheses hold as in Theorem 5.5 and the following two
assumptions are satis�ed:

(i) K is (SNC) at 0;
(ii) K satis�es the condition (SNB) at (x; 0) or F satis�es the condition (SNB) at (x; y) :
Then there exists y� 2 K

� n f0g such that

0 2 D�
NF (x; y) (y

�) +D�
NK (x; 0) (y

�) : (5.5)

Proof. From the above theorem we obtain that for every n 2 Nnf0g ; there exist (xn; yn)
GrF! (x; y) ;

(exn; eyn) GrK! (x; 0) ; (y�n) � SY � ; (z
�
n) ; (ez�n)! 0; x�n 2 bD�F (xn; yn)(y�n+z

�
n); ex�n 2 bD�K(exn; eyn)(y�n+ez�n) such that

x�n + ex�n ! 0: (5.6)

As (y�n) � SY � ; we obtain that there exists y� such that y�n
w�! y� (without relabelling), and from

Proposition 3.5 (i) we get that y�n + ez�n 2 (K (exn))�. Now, taking into account that exn ! x; for
n large enough we have that exn 2 U; so K � K (exn) : It follows that y�n + ez�n 2 K

�
; and as K

�

is weakly-star closed and y�n + ez�n w�! y�; we get that y� 2 K
�
: Suppose �rst that K satis�es the

condition (SNB) at (x; 0) ; hence ex�n is bounded. Whence there exists ex� 2 X� such that ex�n w�! ex�:
Thus, from (5.6) we obtain that there exists x� 2 X� such that x�n

w�! x� and ex�+x� = 0: Using the
de�nition of the Mordukhovich coderivative, it follows that 0 2 D�

NF (x; y) (y
�) +D�

NK (x; 0) (y
�) :

A similar argument works if F satis�es the condition (SNB) at (x; y). To complete the proof, we
only need to prove that y� 6= 0: For this, we suppose that y� = 0: Using the (SNC) property of K
at 0, we obtain from y�n + ez�n 2 K�

and y�n + ez�n w�! 0; that y�n + ez�n ! 0: As ez�n ! 0; it results that
(y�n) also converges to 0; which contradicts the inclusion (y

�
n) � SY � : �

Remark 5.7 (i) The hypothesis (i) for the above theorem is satis�ed when intK 6= ; or the di-
mension of Y is �nite (for more details, see [21]).

(ii) According to [15, Theorem 1.43], if F is Lipschitz-like around (x; y) 2 GrF or K is
Lipschitz-like around (x; 0) 2 GrK, then the hypothesis (ii) for the above theorem is satis�ed.

6 Final comments

In the main results of Sections 4 and 5 we have deduced optimality conditions in terms of Fréchet and
Mordukhovich coderivatives of the set-valued maps F and K; respectively. This unites the study
we made on both e¢ ciency notions de�ned in Section 2. So, as we have seen, to obtain optimality
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conditions in terms of Fréchet coderivative, in both sections we de�ned a function for which we
found a minimum point in a certain domain. Then, in both cases, we used the in�nite penalization
technique, the generalized Fermat rule and some calculus for the Fréchet subdi¤erential. For
getting optimality conditions in terms of Mordukhovich coderivative, we started from the optimality
conditions in terms of Fréchet coderivative and we used various other conditions for each individual
case, like the alliedness property in Section 4, or a sequentially normally boundedness condition in
Section 5. Regarding the �nal conclusions of Sections 4 and 5, they are comparable. For example,
the right-hand sides of relations (4.4) and (5.5) look similar and they are also in relation with the
conclusion of [6, Theorem 4.10]. However, one can observe di¤erent combinations of the technical
assumptions made in every particular case. That interplay of the assumptions is, on one hand,
interesting, and, on the other hand, marks the speci�city of every of the e¢ ciencies we study in
this paper.
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