

www.uaic.ro

COURSE PROGRAMME

1. Information about the programme

1.1 University	University "Alexandru Ioan Cuza" of Iaşi
1.2 Faculty	Faculty of Mathematics
1.3 Department	Mathematics
1.4 Domain	Mathematics
1.5 Cycle	Master
1.6 Programme / Qualification	Applied Mathematics

2. Information about the course

2.1 Course Name	Э		Pra	actical Optimization			
2.2 Course taugh	nt by		Pro	of. PhD Marius DUREA	4		
2.3 Seminary / laboratory taught by			Prof. PhD Marius DUREA				
2.4 Year	2	2.5 Semester	3	2.6 Type of evaluation	Е	2.7 Course type	OB

* OB – Obligatory / OP – Optionally / F – Facultative

3. Total Hours (estimated per semester and activities)

3.1 Number of hours per week	4	3.2	course	2	3.3. seminary/laboratory	2
3.4 Total number of hours	56	3.5	course	28	3.6. seminary/laboratory	28
Distribution						hours
Individual study using textbooks, course notes, bibliography items, etc.						40
Supplimentary study (library, on-line platforms, etc.)						25
Individual study for seminary/laboratory, homeworks,						25
projects, etc.						
Tutoring						
Examination					4	
Other activities						

3.7 Total hours of individual activity	94
3.8 Total hours per semester	150
3.9 Credit points	6

4. Pre-requisites

4.1	Curriculum	Mathematical Analysis, nonlinear optimization theory
4.2	Competencies	Basic knowledge of Computer Programming and Matlab/Octave environment
5. Co	onditions (if necessary)	
5.1	Course	Laboratory room (computers with MATLAB/Octave installed)
5.2	Seminary / Laboratory	Laboratory room(computers with MATLAB installed)

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IAŞI

6. Specific competencies acquired

C1 Manipulating notions, methods and mathematical models, specific techniques in scientific calculus and applications – 2 credits
 C2 Being able to construct and apply mathematical methods for analyzing and simulating some processes – 1 credit
 C3 Being able to develop, analyze and test algorithms and specific programming languages; being able to use them for solving problems in applied mathematics – 1 credit

CT1 Having a responsible attitude towards scientific research and teaching, being able to fully develop the personal potential in the professional career, respecting the principles of a rigorous and efficient work in order to fulfill complex tasks, respecting the ethical norms and principles in the professional activity – 1 credit CT2 Being able to make a selection of information resources and to use them efficiently, in

Romanian or other language of international circulation - 1 credit

7. Course objectives

1.7. General objective	Understand and apply optimization algorithms in order to find and/or approximate the solutions of certain real problems, to obtain numerical algorithms, and to implement them in Matlab/Octave. Being able to generalize the results, when practice will demand.
2.7. Specific objectives	 If successfull at the final examination, students will be able to: Explain the basic methods used during the semester. Describe the analitical methods of solving the studied problems. Use the studied numerical algorithms and the basic optimization tehniques. Analyze the solutions of the specific studied problems. Use Matlab/Octave as a calculus tool

8. Contents

8.1	Course	Teaching methods	Remarks (number oh hours; references)
1.	Karush-Kuhn-Tucker conditions in nonlinear smooth constrained optimization (recapitulation)	Questioning, dialogue, lecture, proof	3 h; [2, 3]
2.	Fritz John conditions and second order conditions	Questioning, dialogue, lecture, proof	5h; [2, 3]
3.	Complexity for some optimization numerical methods. Algorithms for unconstrained optimization: golden section, Fibonacci method	Questioning, dialogue, lecture, proof	5h; [3, 4]
4.	Algorithms for unconstrained optimization: line search method, conjugate gradient method, Newton method, other related methods	Questioning, dialogue, lecture, proof	10 h; [3, 4]
5.	Algorithms for unconstrained optimization: penalty methods; barrier methods	Questioning, dialogue, lecture, proof	5 h; [1, 2]

Bibliography

Main references:

- A. Beck, *First-order methods in optimization*, SIAM, 2017.
 M. Durea, R. Strugariu, *An introduction to nonlinear optimization theory*, De Gruyter, 2014.
- 3. O. Guler, Foundations of optimization, Springer, 2010.
- 4. P. Meserced a S. O. Minigetation Springer, 2006.

8. 2	Seminary / Laboratory	Teaching methods	Remarks
1.	Karush-Kuhn-Tucker conditions in nonlinear smooth constrained optimization (recapitulation)	Questioning, dialogue, exercises	3h; [2, 3, 4]
2.	Fritz John conditions and second order conditions	Questioning, dialogue, exercises	5h; [1, 5]
3.	Complexity for some optimization numerical methods. Algorithms for unconstrained optimization: golden section, Fibonacci method	Questioning, dialogue, exercises	5h; [1, 5]
4.	Algorithms for unconstrained optimization: line search method, conjugate gradient method, Newton method	Questioning, dialogue, exercises	10h; [4, 5]
5.	Algorithms for unconstrained optimization: penalty methods; barrier methods	Questioning, dialogue, exercises	5h; [1, 3]
		exercises	

Bibliography

Main references:

- 1. M. Ancau, Practical optimization with Matlab, Combridge Scholars Publishing, 2019.
- 2. A. Beck, First-order methods in optimization, SIAM, 2017.
- 3. M. Durea, R. Strugariu, An introduction to nonlinear optimization theory, De Gruyter, 2014.
- 4. P. Pedregal, Optimization and approximation, Springer, 2017.

5. J.A. Snyman, D.N. Wilke, *Practical mathematical optimization. Basic optimization theory and gradient-based algorithms*, Springer 2005.

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IAȘI

9. Coordination of the contents with the expectations of the community representatives, professional associations and relevant employers in the corresponding domain

The aim of *Practical Optimization* is to give students the opportunity to understand how they may use the acquired theoretical knowledge in order to obtain solutions of some practical problems using some algorithms and some well -known mathematical software.

10. Assessment and examination

Activity	10.1 Criteria	10.2 Modes	10.3 Weight in the final grade (%)		
10.4 Course	Knowledge and correct use of fundamental concepts, results and algorithms	Written and oral examination N1	67		
10.5 Seminary/	Application of analytical and	Written test			
Laboratory	numerical methods for solving some optimization problems	N2	33		
10.6 Minimal requirements					
- Knowledge of the fundamental notions, understanding the main results					
- Development of algorithms for solving a problem of low-difficulty grade					
N1>=5; (2*N1/3+N2/3) >=5					

Date 29.09.2023

Course coordinator Prof. PhD. Marius Durea Seminary coordinator Prof. PhD. Marius Durea

Aproval date in the department

Head of the departament Prof. PhD. Ioan Bucataru